Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(4): 1766-1782, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36762476

RESUMEN

In Escherichia coli, replication of both strands of genomic DNA is carried out by a single replicase-DNA polymerase III holoenzyme (pol III HE). However, in certain genetic backgrounds, the low-fidelity TLS polymerase, DNA polymerase V (pol V) gains access to undamaged genomic DNA where it promotes elevated levels of spontaneous mutagenesis preferentially on the lagging strand. We employed active site mutants of pol III (pol IIIα_S759N) and pol V (pol V_Y11A) to analyze ribonucleotide incorporation and removal from the E. coli chromosome on a genome-wide scale under conditions of normal replication, as well as SOS induction. Using a variety of methods tuned to the specific properties of these polymerases (analysis of lacI mutational spectra, lacZ reversion assay, HydEn-seq, alkaline gel electrophoresis), we present evidence that repair of ribonucleotides from both DNA strands in E. coli is unequal. While RNase HII plays a primary role in leading-strand Ribonucleotide Excision Repair (RER), the lagging strand is subject to other repair systems (RNase HI and under conditions of SOS activation also Nucleotide Excision Repair). Importantly, we suggest that RNase HI activity can also influence the repair of single ribonucleotides incorporated by the replicase pol III HE into the lagging strand.


Asunto(s)
Reparación del ADN , Escherichia coli , ADN Polimerasa III/genética , Replicación del ADN , Escherichia coli/genética , Ribonucleótidos/metabolismo
2.
Methods Mol Biol ; 2615: 315-325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807801

RESUMEN

Here, we describe an assay that enables mapping of 5'-ends across the genome using next-generation sequencing on an Illumina platform, 5'-End-sequencing (5'-End-seq). We use this method to map free 5'-ends in mtDNA isolated from fibroblasts. This method can be used to answer key questions regarding DNA integrity, DNA replication mechanisms and to identify priming events, primer processing, nick processing, and double strand break processing on the entire genome.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Humanos , ADN Mitocondrial/genética , Mitocondrias/genética , Replicación del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
3.
Nucleic Acids Res ; 50(15): 8749-8766, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35947649

RESUMEN

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.


Asunto(s)
ADN Mitocondrial , Ribonucleasa H , Ratones , Animales , ADN Mitocondrial/química , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , ARN/química , Replicación del ADN/genética , Mitocondrias/genética , Mamíferos/genética
4.
Ugeskr Laeger ; 183(20)2021 05 17.
Artículo en Danés | MEDLINE | ID: mdl-33998448

RESUMEN

Intraoperative neuromonitoring is a perioperative method, supplementary to stealth navigation and fluorescence microscopic imaging in brain surgery. It allows cortical and subcortical mapping, hence real time identification of eloquent brain areas through electrical stimulation of the cerebral cortex and subcortical areas. The method allows for functional guidance during both awake and asleep neurosurgery and aids in optimizing the extent of resection of the relevant pathology while preserving neurological function as summarised in this review.


Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Encéfalo , Neoplasias Encefálicas/cirugía , Estimulación Eléctrica , Humanos , Imagen por Resonancia Magnética , Procedimientos Neuroquirúrgicos , Vigilia
5.
DNA Repair (Amst) ; 101: 103075, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33662762

RESUMEN

Ribonucleotides are frequently incorporated into DNA and can be used as a marker of DNA replication enzymology. To investigate on a genome-wide scale, how E. coli pol V accesses undamaged chromosomal DNA during the SOS response, we mapped the location of ribonucleotides incorporated by steric gate variants of pol V across the entire E. coli genome. To do so, we used strains that are deficient in ribonucleotide excision repair (ΔrnhB), deficient in pol IV DNA polymerase, constitutively express all SOS-regulated genes [lexA(Def)] and constitutively "activated" RecA* (recA730). The strains also harbor two steric gate variants of E. coli pol V (Y11A, or F10L), or a homolog of pol V, (pol VR391-Y13A). Ribonucleotides are frequently incorporated by the pol V-Y11A and pol VR391-Y13A variants, with a preference to the lagging strand. In contrast, the pol V-F10L variant incorporates less ribonucleotides and no strand preference is observed. Sharp transitions in strand specificity are observed at the replication origin (oriC), while a gradient is observed at the termination region. To activate RecA* in a recA+ strain, we treated the strains with ciprofloxacin and genome-wide mapped the location of the incorporated ribonucleotides. Again, the pol V-Y11A steric gate variant exhibited a lagging strand preference. Our data are consistent with a specific role for pol V in lagging strand DNA synthesis across the entire E. coli genome during the SOS response.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Genoma Bacteriano , Respuesta SOS en Genética , ADN Bacteriano/metabolismo , Escherichia coli/genética
6.
Mov Disord Clin Pract ; 7(7): 788-796, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33033736

RESUMEN

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is well established and the most effective treatment for advanced Parkinson's disease (PD). However, little is known of the long-term effects. OBJECTIVES: The aim of this study was to examine the long-term effects of STN-DBS in PD and evaluate the effect of reprogramming after more than 8 years of treatment. METHODS: A total of 82 patients underwent surgery in Copenhagen between 2001 and 2008. Before surgery and at 8 to 15 years follow-up, the patients were rated with the Unified Parkinson's Disease Rating Scale (UPDRS) with and without stimulation and medicine. Furthermore, at long-term follow-up, the patients were offered a systemic reprogramming of the stimulation settings. Data from patients' medical records were collected. The mean (range) age at surgery was 60 (42-78) years, and the duration of disease was 13 (5-25) years. A total of 30 patients completed the long-term follow-up. RESULTS: The mean reduction of the motor UPDRS by medication before surgery was 52%. The improvement of motor UPDRS with stimulation alone compared with motor UPDRS with neither stimulation nor medication was 61% at 1 year and 39% at 8 to 15 years after surgery (before reprogramming). Compared with before surgery, medication was reduced by 55% after 1 year and 44% after 8 to 15 years. After reprogramming, most patients improved. CONCLUSIONS: STN-DBS remains effective in the long run, with a sustained reduction of medication in the 30 of 82 patients available for long-term follow-up. Reprogramming is effective even in the late stages of PD and after many years of treatment.

7.
Proc Natl Acad Sci U S A ; 117(25): 14306-14313, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513727

RESUMEN

Ribonucleotides (rNMPs) incorporated in the nuclear genome are a well-established threat to genome stability and can result in DNA strand breaks when not removed in a timely manner. However, the presence of a certain level of rNMPs is tolerated in mitochondrial DNA (mtDNA) although aberrant mtDNA rNMP content has been identified in disease models. We investigated the effect of incorporated rNMPs on mtDNA stability over the mouse life span and found that the mtDNA rNMP content increased during early life. The rNMP content of mtDNA varied greatly across different tissues and was defined by the rNTP/dNTP ratio of the tissue. Accordingly, mtDNA rNMPs were nearly absent in SAMHD1-/- mice that have increased dNTP pools. The near absence of rNMPs did not, however, appreciably affect mtDNA copy number or the levels of mtDNA molecules with deletions or strand breaks in aged animals near the end of their life span. The physiological rNMP load therefore does not contribute to the progressive loss of mtDNA quality that occurs as mice age.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Inestabilidad Genómica/fisiología , Ribonucleótidos/genética , Ribonucleótidos/metabolismo , Animales , Daño del ADN , Femenino , Dosificación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos , Proteína 1 que Contiene Dominios SAM y HD/genética
8.
PLoS Genet ; 15(1): e1007781, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605451

RESUMEN

Human mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors. The majority of all transcription events from LSP are prematurely terminated after ~120 nucleotides, forming stable R-loops. These nascent R-loops cannot directly prime mtDNA synthesis, but must first be processed by RNase H1 to generate 3'-ends that can be used by DNA polymerase γ to initiate DNA synthesis. Our findings are consistent with recent studies of a knockout mouse model, which demonstrated that RNase H1 is required for R-loop processing and mtDNA maintenance in vivo. Both R-loop formation and DNA replication initiation are stimulated by the mitochondrial single-stranded DNA binding protein. In an RNase H1 deficient patient cell line, the precise initiation of mtDNA replication is lost and DNA synthesis is initiated from multiple sites throughout the mitochondrial control region. In combination with previously published in vivo data, the findings presented here suggest a model, in which R-loop processing by RNase H1 directs origin-specific initiation of DNA replication in human mitochondria.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/biosíntesis , Mitocondrias/genética , Ribonucleasa H/genética , Animales , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Origen de Réplica/genética
9.
Nucleic Acids Res ; 47(5): 2425-2435, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30597049

RESUMEN

DNA polymerase η (pol η) is best known for its ability to bypass UV-induced thymine-thymine (T-T) dimers and other bulky DNA lesions, but pol η also has other cellular roles. Here, we present evidence that pol η competes with DNA polymerases α and δ for the synthesis of the lagging strand genome-wide, where it also shows a preference for T-T in the DNA template. Moreover, we found that the C-terminus of pol η, which contains a PCNA-Interacting Protein motif is required for pol η to function in lagging strand synthesis. Finally, we provide evidence that a pol η dependent signature is also found to be lagging strand specific in patients with skin cancer. Taken together, these findings provide insight into the physiological role of DNA synthesis by pol η and have implications for our understanding of how our genome is replicated to avoid mutagenesis, genome instability and cancer.


Asunto(s)
Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Dímeros de Pirimidina/genética , Daño del ADN/genética , ADN Polimerasa I/genética , ADN Polimerasa III/genética , Reparación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Mutagénesis , Saccharomyces cerevisiae/genética
10.
PLoS Genet ; 14(12): e1007849, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586386

RESUMEN

Sequencing of whole cancer genomes has revealed an abundance of recurrent mutations in gene-regulatory promoter regions, in particular in melanoma where strong mutation hotspots are observed adjacent to ETS-family transcription factor (TF) binding sites. While sometimes interpreted as functional driver events, these mutations are commonly believed to be due to locally inhibited DNA repair. Here, we first show that low-dose UV light induces mutations preferably at a known ETS promoter hotspot in cultured cells even in the absence of global or transcription-coupled nucleotide excision repair (NER). Further, by genome-wide mapping of cyclobutane pyrimidine dimers (CPDs) shortly after UV exposure and thus before DNA repair, we find that ETS-related mutation hotspots exhibit strong increases in CPD formation efficacy in a manner consistent with tumor mutation data at the single-base level. Analysis of a large whole genome cohort illustrates the widespread contribution of this effect to recurrent mutations in melanoma. While inhibited NER underlies a general increase in somatic mutation burden in regulatory elements including ETS sites, our data supports that elevated DNA damage formation at specific genomic bases is at the core of the prominent promoter mutation hotspots seen in skin cancers, thus explaining a key phenomenon in whole-genome cancer analyses.


Asunto(s)
Melanoma/etiología , Melanoma/genética , Mutación , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/genética , Dímeros de Pirimidina/biosíntesis , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos , Secuencia de Bases , Sitios de Unión/genética , Línea Celular Tumoral , Daño del ADN , ADN de Neoplasias/genética , Humanos , Melanoma/metabolismo , Neoplasias Inducidas por Radiación/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-ets/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efectos de la radiación , Neoplasias Cutáneas/metabolismo , Secuenciación Completa del Genoma
11.
Ugeskr Laeger ; 180(30)2018 Jul 23.
Artículo en Danés | MEDLINE | ID: mdl-30037384

RESUMEN

The neurointensive care field emerged as a separate medical speciality in the 1980s, driven by the development of new monitoring tools. The most important goal of neurointensive care is avoiding secondary brain injuries or detecting them in time to implement effective treatment. Understanding cerebral metabolism is key in the care of neurocritical patients, and continuous monitoring through intracerebral microdialysis allows for differentiation of different pathological mechanisms, in turn catalysing development of novel treatments.


Asunto(s)
Encéfalo , Monitorización Neurofisiológica/métodos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Circulación Cerebrovascular/fisiología , Humanos , Presión Intracraneal/fisiología , Ácido Láctico/metabolismo , Microdiálisis , Mitocondrias/metabolismo , Mitocondrias/patología , Oxígeno/metabolismo
12.
Methods Mol Biol ; 1672: 329-345, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043634

RESUMEN

Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.


Asunto(s)
Replicación del ADN , ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Ribonucleótidos , Biología Computacional/métodos , ADN/aislamiento & purificación , ADN/metabolismo , Reparación del ADN , ADN de Hongos/aislamiento & purificación , Biblioteca de Genes , Genómica/métodos , Hidrólisis , Ribonucleasa H/metabolismo , Levaduras
13.
Biotechnol Prog ; 34(1): 231-242, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29063712

RESUMEN

In this study, the aim was to establish if loss of DNA integrity is a cause of loss of culturability for probiotic bacteria during storage in dry state. The number of colony forming units (CFU), number of metabolically active cells, and DNA integrity during dry storage of probiotic strains, B. animalis subsp. lactis BB-12 and L. acidophilus LA-5, were investigated. The probiotic strains were freeze-dried and stored at 20°C, with and without oxygen present, and at water activity levels 0.22 or 0.32. Dry storage resulted in a decrease in CFU during the entire storage period. The number of metabolically active cells was unchanged during storage of B. animalis subsp. lactis BB-12, but did decrease during the first week of storage of L. acidophilus LA-5. Loss of DNA integrity was evident for both strains during storage and correlated well with the loss of CFU. Both loss of CFU and loss of DNA integrity were significantly greater for both strains when oxygen was present and when aw was increased. Statistical analysis indicates a possible causal relationship between DNA degradation and loss of culturability and this idea is consistent with the function of DNA at cell division. The study contributes with new knowledge of the cause for loss of CFU during dry storage of probiotic bacteria, which possibly can aid in the improvement of preservation techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:231-242, 2018.


Asunto(s)
Fragmentación del ADN , Genoma Bacteriano/genética , Genómica , Probióticos , Bifidobacterium/genética , Bifidobacterium/crecimiento & desarrollo , Liofilización , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/crecimiento & desarrollo , Células Madre/metabolismo
14.
J Vis Exp ; (129)2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29286447

RESUMEN

Established approaches to estimate the number of ribonucleotides present in a genome are limited to the quantitation of incorporated ribonucleotides using short synthetic DNA fragments or plasmids as templates and then extrapolating the results to the whole genome. Alternatively, the number of ribonucleotides present in a genome may be estimated using alkaline gels or Southern blots. More recent in vivo approaches employ Next-generation sequencing allowing genome-wide mapping of ribonucleotides, providing the position and identity of embedded ribonucleotides. However, they do not allow quantitation of the number of ribonucleotides which are incorporated into a genome. Here we describe how to simultaneously map and quantitate the number of ribonucleotides which are incorporated into human mitochondrial DNA in vivo by Next-generation sequencing. We use highly intact DNA and introduce sequence specific double strand breaks by digesting it with an endonuclease, subsequently hydrolyzing incorporated ribonucleotides with alkali. The generated ends are ligated with adapters and these ends are sequenced on a Next-generation sequencing machine. The absolute number of ribonucleotides can be calculated as the number of reads outside the recognition site per average number of reads at the recognition site for the sequence specific endonuclease. This protocol may also be utilized to map and quantitate free nicks in DNA and allows adaption to map other DNA lesions that can be processed to 5´-OH ends or 5´-phosphate ends. Furthermore, this method can be applied to any organism, given that a suitable reference genome is available. This protocol therefore provides an important tool to study DNA replication, 5´-end processing, DNA damage, and DNA repair.


Asunto(s)
Mapeo Cromosómico/métodos , Reparación del ADN , Replicación del ADN , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ribonucleótidos/genética , Humanos
15.
Proc Natl Acad Sci U S A ; 114(47): 12466-12471, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109257

RESUMEN

Incorporation of ribonucleotides into DNA during genome replication is a significant source of genomic instability. The frequency of ribonucleotides in DNA is determined by deoxyribonucleoside triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the ability of DNA polymerases to discriminate against ribonucleotides, and by the capacity of repair mechanisms to remove incorporated ribonucleotides. To simultaneously compare how the nuclear and mitochondrial genomes incorporate and remove ribonucleotides, we challenged these processes by changing the balance of cellular dNTPs. Using a collection of yeast strains with altered dNTP pools, we discovered an inverse relationship between the concentration of individual dNTPs and the amount of the corresponding ribonucleotides incorporated in mitochondrial DNA, while in nuclear DNA the ribonucleotide pattern was only altered in the absence of ribonucleotide excision repair. Our analysis uncovers major differences in ribonucleotide repair between the two genomes and provides concrete evidence that yeast mitochondria lack mechanisms for removal of ribonucleotides incorporated by the mtDNA polymerase. Furthermore, as cytosolic dNTP pool imbalances were transmitted equally well into the nucleus and the mitochondria, our results support a view of the cytosolic and mitochondrial dNTP pools in frequent exchange.


Asunto(s)
ADN Polimerasa gamma/fisiología , Desoxirribonucleótidos/fisiología , Genoma Mitocondrial/fisiología , Mitocondrias/fisiología , Saccharomyces cerevisiae/fisiología , Núcleo Celular/fisiología , Citoplasma/fisiología , Reparación de la Incompatibilidad de ADN/fisiología , Replicación del ADN/fisiología , ADN Mitocondrial/metabolismo , Inestabilidad Genómica
16.
Biotechnol J ; 12(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29034577

RESUMEN

An industrial scale biomass production using batch or fed-batch fermentations usually optimized by selection of bacterial strains, tuning fermentation media, feeding strategy, and temperature. However, in-depth investigation of the biomass metabolome during the production may reveal new knowledge for better optimization. In this study, for the first time, the authors investigated seven fermentation batches performed on five Streptoccoccus thermophilus strains during the biomass production at Chr. Hansen (Denmark) in a real life large scale fermentation process. The study is designed to investigate effects of batch fermentation, fermentation time, production line, and yeast extract brands on the biomass metabolome using untargeted GC-MS metabolomics. Processing of the raw GC-MS data using PARAFAC2 revealed a total of 90 metabolites out of which 64 are identified. Partitioning of the data variance according to the experimental design was performed using ASCA and revealed that batch and fermentation time effects and their interaction term were the most significant effects. The yeast extract brand had a smaller impact on the biomass metabolome, while the production line showed no effect. This study shows that in-depth metabolic analysis of fermentation broth provides a new tool for advanced optimization of high-volume-low-cost biomass production by lowering the cost, increase the yield, and augment the product quality.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Fermentación , Cromatografía de Gases y Espectrometría de Masas/métodos , Microbiología Industrial/métodos , Metabolómica , Streptococcus/metabolismo , Análisis de Varianza , Biomasa , Medios de Cultivo/química , Medios de Cultivo/farmacología , Metaboloma , Streptococcus/efectos de los fármacos , Streptococcus/crecimiento & desarrollo , Factores de Tiempo , Levaduras/química
17.
PLoS Genet ; 13(2): e1006628, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28207748

RESUMEN

Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.


Asunto(s)
Reparación del ADN/genética , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Ribonucleótidos/genética , ADN/biosíntesis , ADN Polimerasa gamma , Replicación del ADN/genética , Fibroblastos , Genoma Mitocondrial , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/patología , ARN/biosíntesis , Ribonucleasas/genética
18.
Nucleosides Nucleotides Nucleic Acids ; 35(10-12): 677-690, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27906638

RESUMEN

Deoxyribonucleoside kinases (dNKs) salvage deoxyribonucleosides (dNs) and catalyze the rate limiting step of this salvage pathway by converting dNs into corresponding monophosphate forms. These enzymes serve as an excellent model to study duplicated genes and their evolutionary history. So far, among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of dCK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters of the dCK/dGK enzymes encoded by these genes. The two dCK enzymes in G. gallus have broader substrate specificity than their human or X. laevis counterparts. Additionally, the duplicated dCK enzyme in G. gallus might have become mitochondria. Based on our study we postulate that changing and adapting substrate specificities and subcellular localization are likely the drivers behind the evolution of vertebrate dNKs.


Asunto(s)
Proteínas Aviares/genética , Timidina Quinasa/genética , Proteínas de Xenopus/genética , Animales , Proteínas Aviares/química , Pollos , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Cinética , Especificidad de Órganos , Timidina Quinasa/química , Proteínas de Xenopus/química , Xenopus laevis
19.
Adv Mater ; 27(37): 5523-7, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26291030

RESUMEN

Topology optimized architectures are designed and printed with programmable Poisson's ratios ranging from -0.8 to 0.8 over large deformations of 20% or more.


Asunto(s)
Modelos Teóricos , Impresión Tridimensional , Simulación por Computador , Dimetilpolisiloxanos/química , Ensayo de Materiales , Siliconas/química , Programas Informáticos , Resistencia a la Tracción
20.
Microbiology (Reading) ; 161(10): 1990-1998, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26197785

RESUMEN

Probiotics are bacteria used in the food industry due to their potential health benefits. In this study, the plasma membrane of the probiotic Lactobacillus acidophilus La-5 was investigated using state-of-the-art high-resolution shotgun lipidomics. Comparisons of the lipidome of the plasma membrane were done after altering the fatty acid composition by supplementing L. acidophilus La-5 with saturated, mono-, di- and tri-unsaturated fatty acids during fermentation. The plasma membrane with the highest degree of saturation resulted in a lipid composition with the highest proportion of cardiolipin (CL) and lowest proportion of monolysocardiolipin (MLCL). No significant changes were found for other lipid classes. The bacteria grown with di- and tri-unsaturated fatty acids were expected to have more unsaturated plasma membranes than bacteria grown with mono-unsaturated fatty acids. This was also the case for MLCL, but the numbers of double bonds for CL were quite similar for these three samples. The results indicate that L. acidophilus La-5 possesses a molecular mechanism for remodelling and optimizing the fatty acid composition of CL and MLCL species and the molar ratio of CL and MLCL. This study contributes new knowledge on the previously uninvestigated lipidome of L. acidophilus La-5.


Asunto(s)
Membrana Celular/química , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Medios de Cultivo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...