Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(17): 11959-11966, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29670983

RESUMEN

In this study, we report the unimolecular dissociation mechanism of megadalton SO3-containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.

2.
Rev Sci Instrum ; 87(3): 033103, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27036754

RESUMEN

An instrument combining an electrospray ionization source and a velocity-map imaging (VMI) spectrometer has been developed in order to study the delayed electron emission of molecular anions and especially of polyanions. It operates at a high repetition rate (kHz) in order to increase the acquisition speed. The VMI spectrometer has been upgraded for nanosecond time resolution by gating the voltages applied on the position-sensitive detector. Kinetic energy release distribution of thermionic emission (without any contribution from direct detachment) can be recorded for well-defined delays after the nanosecond laser excitation. The capability of the instrument is demonstrated by recording photodetachment spectra of the benchmark C60(-) anion and C84(2-) dianion.

3.
Rev Sci Instrum ; 86(9): 094101, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26429458

RESUMEN

This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.


Asunto(s)
Rayos Láser , Espectrometría de Masas/métodos , Eosina Amarillenta-(YS)/química , Espectrometría de Masas/instrumentación , Oxidación-Reducción , Procesos Fotoquímicos , Temperatura , Factores de Tiempo , Ubiquitina/química
4.
Rev Sci Instrum ; 82(8): 084104, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21895258

RESUMEN

This work presents the implementation of tandem mass spectrometry for experiments on single electrosprayed ions from compounds of megadalton (MDa) molecular weight, using two charge detection devices. The first mass spectrometry stage (first charge detection device) combined with an ion gate allows both mass-to-charge ratio and charge selections of the megadalton ion of interest. The second stage is based on an electrostatic ion trap and consists of an image charge detection tube mounted between two ion mirrors. Single MDa ions can be stored for several dozen milliseconds. During the trapping time, single ions can be irradiated by a continuous wavelength CO(2) laser. We observe stepwise changes in the charge of a single trapped ion owing to multiphoton activation. Illustration of infrared multiphoton dissociation tandem mass spectrometry are given for single megadalton ions of poly(ethylene oxide)s and DNAs.

5.
Rapid Commun Mass Spectrom ; 25(5): 617-23, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21290448

RESUMEN

Ions from compounds of megadalton (MDa) molecular weight were produced in an electrospray ionization source from solutions of poly(ethylene oxide) (PEO) samples with average molecular weights ranging from 1,000,000 to 7,000,000 Da. Charge detection mass spectrometry (CDMS) has been used to determine the mass of the MDa PEOs. Simultaneous measurement of the charge and velocity of individual ions allows the mass determination of the ion, after calibration of the instrument with independent samples. In addition to the mass spectra, CDMS generates charge-versus-mass plots, which allow investigation of the charging of electrosprayed ions over a broad range of masses. The experimental charging capacity of MDa PEOs is compared with a simple model based on the affinity of alkali cations for oxygen sites and on the electrostatic potential energy of the charged polymer. The charging capacity of PEOs was also investigated as a function of the concentration of and the type of alkali ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...