Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 46(1): 112-125.e4, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29974860

RESUMEN

Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated germline-transmitted knockout phenotypes in >90% of G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes and validated several. Using this resource, we targeted 50 cardiomyocyte transcriptional regulators and uncovered a role of zbtb16a in cardiac development. This system provides a platform for rapid screening of genes of interest in development, physiology, and disease models in zebrafish.


Asunto(s)
Técnicas de Inactivación de Genes/métodos , Corazón/embriología , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Ingeniería Genética/métodos , Morfolinos/genética , Miocitos Cardíacos/citología , Transcripción Genética/genética , Pez Cebra/embriología
2.
Sci Signal ; 11(513)2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339534

RESUMEN

The transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) family of cytokines critically regulates vascular morphogenesis and homeostasis. Impairment of TGF-ß or BMP signaling leads to heritable vascular disorders, including hereditary hemorrhagic telangiectasia (HHT). Drosha, a key enzyme for microRNA (miRNA) biogenesis, also regulates the TGF-ß and BMP pathway through interaction with Smads and their joint control of gene expression through miRNAs. We report that mice lacking Drosha in the vascular endothelium developed a vascular phenotype resembling HHT that included dilated and disorganized vasculature, arteriovenous fistulae, and hemorrhages. Exome sequencing of HHT patients who lacked known pathogenic mutations revealed an overrepresentation of rare nonsynonymous variants of DROSHA Two of these DROSHA variants (P100L and R279L) did not interact with Smads and were partially catalytically active. In zebrafish, expression of these mutants or morpholino-directed knockdown of Drosha resulted in angiogenesis defects and abnormal vascular permeability. Together, our studies point to an essential role of Drosha in vascular development and the maintenance of vascular integrity, and reveal a previously unappreciated link between Drosha dysfunction and HHT.


Asunto(s)
Regulación de la Expresión Génica , Mutación , Neovascularización Patológica , Ribonucleasa III/genética , Ribonucleasa III/fisiología , Telangiectasia Hemorrágica Hereditaria/genética , Animales , Estudios de Casos y Controles , Células Cultivadas , Niño , Estudios de Cohortes , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Morfogénesis , Linaje , Fenotipo , Ribonucleasa III/metabolismo , Transducción de Señal , Telangiectasia Hemorrágica Hereditaria/metabolismo , Telangiectasia Hemorrágica Hereditaria/patología , Pez Cebra/embriología , Pez Cebra/fisiología
3.
J Cell Biol ; 217(3): 1097-1112, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29301867

RESUMEN

Mechanisms that sense and regulate epithelial morphogenesis, integrity, and homeostasis are incompletely understood. Protease-activated receptor 2 (Par2), the Par2-activating membrane-tethered protease matriptase, and its inhibitor, hepatocyte activator inhibitor 1 (Hai1), are coexpressed in most epithelia and may make up a local signaling system that regulates epithelial behavior. We explored the role of Par2b in matriptase-dependent skin abnormalities in Hai1a-deficient zebrafish embryos. We show an unexpected role for Par2b in regulation of epithelial apical cell extrusion, roles in regulating proliferation that were opposite in distinct but adjacent epithelial monolayers, and roles in regulating cell-cell junctions, mobility, survival, and expression of genes involved in tissue remodeling and inflammation. The epidermal growth factor receptor Erbb2 and matrix metalloproteinases, the latter induced by Par2b, may contribute to some matriptase- and Par2b-dependent phenotypes and be permissive for others. Our results suggest that local protease-activated receptor signaling can coordinate cell behaviors known to contribute to epithelial morphogenesis and homeostasis.


Asunto(s)
Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Serina Endopeptidasas/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Células Epiteliales/citología , Homeostasis/fisiología , Morfogénesis/fisiología , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Serina Endopeptidasas/genética , Proteínas de Pez Cebra/genética
4.
Dev Biol ; 418(1): 157-165, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27333774

RESUMEN

Sphingosine 1-phosphate (S1P) is a bioactive lipid that acts via G protein-coupled receptors. The S1P receptor S1P1, encoded by S1pr1, is expressed in developing heart but its roles there remain largely unexplored. Analysis of S1pr1 LacZ knockin embryos revealed ß-galactosidase staining in cardiomyocytes in the septum and in the trabecular layer of hearts collected at 12.5 days post coitus (dpc) and weak staining in the inner aspect of the compact layer at 15.5 dpc and later. Nkx2-5-Cre- and Mlc2a-Cre-mediated conditional knockout of S1pr1 led to ventricular noncompaction and ventricular septal defects at 18.5 dpc and to perinatal lethality in the majority of mutants. Further analysis of Mlc2a-Cre conditional mutants revealed no gross phenotype at 12.5 dpc but absence of the normal increase in the number of cardiomyocytes and the thickness of the compact layer at 13.5 dpc and after. Consistent with relative lack of a compact layer, in situ hybridization at 13.5 dpc revealed expression of trabecular markers extending almost to the epicardium in mutants. Mutant hearts also showed decreased myofibril organization in the compact but not trabecular myocardium at 12.5 dpc. These results suggest that S1P signaling via S1P1 in cardiomyocytes plays a previously unknown and necessary role in heart development in mice.


Asunto(s)
Corazón/embriología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Animales , Proliferación Celular/genética , Técnicas de Inactivación de Genes , Defectos del Tabique Interventricular/genética , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Miofibrillas/genética , Miofibrillas/metabolismo , Cadenas Ligeras de Miosina/genética , Transducción de Señal , Receptores de Esfingosina-1-Fosfato
5.
J Vis Exp ; (96): e52460, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25742284

RESUMEN

Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.


Asunto(s)
Vasos Sanguíneos/lesiones , Modelos Animales de Enfermedad , Pez Cebra/embriología , Animales , Hemostasis , Microscopía por Video/métodos , Imagen de Lapso de Tiempo/métodos , Cicatrización de Heridas
6.
Immunity ; 29(2): 283-94, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18691913

RESUMEN

Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, although the precise roles of TNF signaling preceding this endpoint remain undefined. We monitored transparent Mycobacterium marinum-infected zebrafish live to conduct a stepwise dissection of how TNF signaling operates in mycobacterial pathogenesis. We found that loss of TNF signaling caused increased mortality even when only innate immunity was operant. In the absence of TNF, intracellular bacterial growth and granuloma formation were accelerated and was followed by necrotic death of overladen macrophages and granuloma breakdown. Thus, TNF is not required for tuberculous granuloma formation, but maintains granuloma integrity indirectly by restricting mycobacterial growth within macrophages and preventing their necrosis.


Asunto(s)
Granuloma/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium marinum/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Factores de Necrosis Tumoral/metabolismo , Animales , Apoptosis , Muerte Celular , Movimiento Celular , Citocinas/inmunología , Citocinas/metabolismo , Embrión no Mamífero , Granuloma/metabolismo , Granuloma/microbiología , Inmunidad Innata , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/crecimiento & desarrollo , Mycobacterium marinum/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Factores de Necrosis Tumoral/inmunología , Pez Cebra/inmunología , Pez Cebra/microbiología
7.
Cell Host Microbe ; 2(1): 29-39, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-18005715

RESUMEN

In tuberculosis, infecting mycobacteria are phagocytosed by macrophages, which then migrate into deeper tissue and recruit additional cells to form the granulomas that eventually contain infection. Mycobacteria are exquisitely adapted macrophage pathogens, and observations in the mouse model of tuberculosis have suggested that mycobacterial growth is not inhibited in macrophages until adaptive immunity is induced. Using the optically transparent and genetically tractable zebrafish embryo-Mycobacterium marinum model of tuberculosis, we have directly examined early infection in the presence and absence of macrophages. The absence of macrophages led rapidly to higher bacterial burdens, suggesting that macrophages control infection early and are not an optimal growth niche. However, we show that macrophages play a critical role in tissue dissemination of mycobacteria. We propose that residence within macrophages represents an evolutionary trade-off for pathogenic mycobacteria that slows their early growth but provides a mechanism for tissue dissemination.


Asunto(s)
Enfermedades de los Peces/microbiología , Macrófagos/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum , Pez Cebra/microbiología , Animales , Embrión no Mamífero/microbiología , Pez Cebra/embriología
8.
Zebrafish ; 2(2): 105-11, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-18248170

RESUMEN

One of the strengths of the zebrafish is the ease with which in situ hybridization can be performed to determine spatial and temporal patterns of gene expression in whole embryos. Thus far, colorimetric detection methods are mainly used for these analyses. Here we describe a fluorescent in situ hybridization (FISH) protocol for whole-mount zebrafish embryos using tyramide signal amplification (TSA). An optimal set of reagents was identified that allows for simultaneous localization of gene expression patterns of two genes within the same embryo, permitting identification of colocalized expression within single cells. This protocol can be extended to perform multiplex studies by repetition of the TSA-based detection for each target sequentially with a different fluorescent dye label. To this effect, we demonstrate that this approach can be combined with standard horseradish peroxidase (HRP)-mediated immunocytochemistry procedures in addition to FISH.

9.
PLoS Biol ; 2(11): e367, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15510227

RESUMEN

Granulomas are organized host immune structures composed of tightly interposed macrophages and other cells that form in response to a variety of persistent stimuli, both infectious and noninfectious. The tuberculous granuloma is essential for host containment of mycobacterial infection, although it does not always eradicate it. Therefore, it is considered a host-beneficial, if incompletely efficacious, immune response. The Mycobacterium RD1 locus encodes a specialized secretion system that promotes mycobacterial virulence by an unknown mechanism. Using transparent zebrafish embryos to monitor the infection process in real time, we found that RD1-deficient bacteria fail to elicit efficient granuloma formation despite their ability to grow inside of infected macrophages. We showed that macrophages infected with virulent mycobacteria produce an RD1-dependent signal that directs macrophages to aggregate into granulomas. This Mycobacterium-induced macrophage aggregation in turn is tightly linked to intercellular bacterial dissemination and increased bacterial numbers. Thus, mycobacteria co-opt host granulomas for their virulence.


Asunto(s)
Infecciones por Mycobacterium/microbiología , Mycobacterium tuberculosis/patogenicidad , Ranidae/microbiología , Tuberculoma/microbiología , Tuberculosis/microbiología , Animales , Muerte Celular , Línea Celular , Células Cultivadas , Quimiotaxis , Granuloma/microbiología , Etiquetado Corte-Fin in Situ , Activación de Macrófagos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Microscopía por Video , Mutación , Infecciones por Mycobacterium/patología , Factores de Tiempo , Virulencia , Pez Cebra
10.
Immunity ; 17(6): 693-702, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12479816

RESUMEN

Infection of vertebrate hosts with pathogenic Mycobacteria, the agents of tuberculosis, produces granulomas, highly organized structures containing differentiated macrophages and lymphocytes, that sequester the pathogen. Adult zebrafish are naturally susceptible to tuberculosis caused by Mycobacterium marinum. Here, we exploit the optical transparency of zebrafish embryos to image the events of M. marinum infection in vivo. Despite the fact that the embryos do not yet have lymphocytes, infection leads to the formation of macrophage aggregates with pathological hallmarks of granulomas and activation of previously identified granuloma-specific Mycobacterium genes. Thus, Mycobacterium-macrophage interactions can initiate granuloma formation solely in the context of innate immunity. Strikingly, infection can redirect normal embryonic macrophage migration, even recruiting macrophages seemingly committed to their developmentally dictated tissue sites.


Asunto(s)
Granuloma/inmunología , Granuloma/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Mycobacterium marinum/fisiología , Pez Cebra/inmunología , Animales , Adhesión Bacteriana/inmunología , Embrión no Mamífero/citología , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Microscopía por Video , Mycobacterium marinum/ultraestructura , Pez Cebra/embriología , Pez Cebra/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA