Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Intervalo de año de publicación
1.
Oecologia ; 201(3): 783-795, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36853383

RESUMEN

Understanding the factors that mediate carbon (C) cycling is increasingly important as anthropogenic activities and climate change alter ecosystems. Decomposition rates mediate C cycling and are in part regulated by sodium (Na) where Na is limiting up to some threshold after which Na becomes stressful and reduces decomposition rates (i.e., the Sodium Subsidy-Stress hypothesis). An overlooked pathway by which decomposers encounter increased salts like NaCl is through plants, which often take up Na in proportion to soil concentrations. Here we tested the hypothesis that Na addition through litter (detritus) and water and their interaction would impact detrital processing and leachate chemistry. Laboratory riparian soil mesocosms received either artificial litter (100% cellulose sponges) soaked in 0.05% NaCl (NaClL) or just H2O (H2OL: control) and half of each litter treatment received weekly additions of 150 ml of either 0.05% NaCl water (NaClW) or just H2O (H2OW: control). After 8 weeks decomposition was higher in NaCl addition treatments (both NaClL and NaClW and their combo) than controls (H2OL + H2OW) but reflected a unimodal relationship where the saltiest treatment (NaClL + NaClW) was only marginally higher than controls indicating a subsidy-stress response. Previous studies in this system found that Na addition in either water or litter decreased decomposition. However, differences may reflect a phenology of Na demand where Na-limitation increases in the spring (this study). These results indicate that our understanding of how Na impacts detrital processes, C cycling, and aquatic-terrestrial linkages necessitates incorporation of temporal dynamics.


Asunto(s)
Ecosistema , Sodio , Sodio/metabolismo , Cloruro de Sodio , Suelo/química , Agua/metabolismo , Hojas de la Planta/metabolismo
2.
Biota Neotrop. (Online, Ed. ingl.) ; 23(4): e20231520, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1527942

RESUMEN

Abstract It is repeatedly stressed the need to characterize the extant biodiversity in tropical ecosystems. However, inventory studies are still progressing slowly in dry ecosystems, leading to the underestimation of their true biodiversity and hindering conservation efforts. In this study, we present primary and secondary data, along with an updated list of amphibians and reptiles from two localities in the São Francisco-Gurguéia region in Piauí. Additionally, we compare the species composition between nine areas within the Caatinga, which were sampled using standardized methods over the past ten years, to examine broader spatial patterns of community composition. To survey reptiles and amphibians, we employed similar methods and sampling efforts in two areas within the Serra das Confusões National Park (SCNP) region. Our surveys recorded a total of 73 species of amphibians and reptiles, of which 24 are new distribution records for the SCNP region. Consequently, our findings increase the known herpetofauna in the region to 94 species. Despite their proximity, the two sites in the SCNP region exhibited only 42% similarity in species composition, and they differed significantly from other areas within the Caatinga. Furthermore, even the closer Caatinga areas presented differences in species composition, highlighting the necessity to evaluate biodiversity across the landscape and contribute to understanding biogeographic patterns.


Resumo É repetidamente enfatizada a necessidade de caracterizar a biodiversidade vivente em ecossistemas tropicais. No entanto, os estudos de inventário ainda estão progredindo lentamente em ecossistemas secos, levando à subestimação de sua verdadeira biodiversidade e dificultando os esforços de conservação. Neste estudo, apresentamos dados primários e secundários, juntamente com uma lista atualizada de anfíbios e répteis de duas localidades na região de São Francisco-Gurguéia, do Piauí. Além disso, comparamos a composição de espécies entre nove áreas dentro da Caatinga, que foram amostradas usando métodos padronizados nos últimos dez anos, para examinar padrões espaciais mais amplos de composição da comunidade. Para estudar répteis e anfíbios, utilizamos métodos e esforços de amostragem semelhantes em duas áreas na região do Parque Nacional da Serra das Confusões (PNSC). Nossos levantamentos registraram um total de 73 espécies de anfíbios e répteis, das quais 24 são novos registros de distribuição para a região do PNSC. Consequentemente, nossos resultados aumentam a herpetofauna conhecida na região para 94 espécies. Apesar da proximidade, os dois locais na região do PNSC exibiram apenas 42% de similaridade na composição de espécies e diferiram significativamente de outras áreas dentro da Caatinga. Mesmo áreas mais próximas da Caatinga apresentaram diferenças na composição de espécies, destacando a necessidade de avaliar a biodiversidade em toda a paisagem e contribuir para a compreensão de padrões biogeográficos.

3.
Environ Entomol ; 50(5): 1118-1126, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34131713

RESUMEN

Bark beetles and root weevils can impact forests through tree death on landscape scales. Recently, subterranean termites have been linked to these beetles via the presence of bluestain fungi (Ascomycota: Ophiostomataceae), which are vectored to trees by beetles. However, only a small subset of bluestain species have been examined. Here, we tested whether termite-bluestain association patterns in the field reflect termite feeding preference in laboratory choice trials. We documented the presence of four bluestain fungi (Leptographium procerum (W.B. Kendr.), L. terebrantis (Barras & Perry), Grosmannia huntii (Rob.-Jeffr.), and G. alacris (T.A. Duong, Z.W. de Beer & M.J. Wingf.) in the roots of 2,350 loblolly pine trees in the southeastern United States and whether termites were present or absent on these roots and paired this with laboratory choice feeding trials. Termites were found 2.5-fold on tree roots with at least one bluestain fungus present than tree roots without bluestain fungi. Although termites in this study and others were associated with L. procerum, L. terebrantis, and marginally G. huntii, termites only showed preferential feeding on wood inoculated with G. huntii in laboratory trials. This suggests that increased termite presence on wood with bluestain fungi may be driven by factors other than increased wood palatability. Termites could thus disproportionately affect wood turnover rates for specific pools (e.g., bark beetle and root weevil attacked trees) and in some cases (e.g., G. huntii) accelerate wood decomposition. This study supports the growing evidence that the association between subterranean termites and bluestain fungi is spatially and taxonomically widespread.


Asunto(s)
Isópteros , Ophiostomatales , Animales , Pinus taeda , Madera
4.
J Anim Ecol ; 89(2): 272-275, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32037601

RESUMEN

In Focus: Kaspari, M., Welti, E. A. R., & de Beurs, K. M. (2020). The nutritional geography of ants: Gradients of sodium and sugar limitation across North American grasslands. Journal of Animal Ecology, 89, 276-284. Biologically essential elements and macromolecules impact individuals to ecosystems and vary across space. Predictive frameworks for understanding community patterns across nutritional gradients are increasingly important as the nutritional landscape is continually altered by global change. Grasslands vary in the quantity and quality of essential nutrients that can impact plant consumer abundance, biomass and activity, but causes for variation, particularly across large spatial scales are poorly understood. In 53 North American grasslands spanning 16° latitude, Kaspari et al. (2020) tested three hypotheses for explaining sources of sodium (Na) limitation and five hypotheses for explaining sources of sugar limitation of ants, which are common and ecologically important omnivores that consume both plant- and animal-derived material. For both Na and sugar, over half of the variation in ant bait usage was accounted for by their predictions. Specifically, after accounting for ant activity (ant usage of sugar baits), ant Na-limitation was next best predicted by plant Na content and lastly, insect biomass, while sugar limitation after accounting for activity (ant usage of Na baits) was best predicted by growing season, then ecosystem productivity, plant potassium (K) and phosphorous (P), respectively. Kaspari et al. (2020) demonstrate the importance of plant physiology and chemistry towards a predictive framework for understanding sugar- and Na-limitation and highlights the importance of tackling ecological questions from a geographical perspective. This framework can provide a useful foundation for predicting future patterns in grassland organism nutritional ecology as plant species and physiology are altered with global change.


Asunto(s)
Hormigas , Animales , Ecosistema , Geografía , Pradera , Sodio , Azúcares
5.
Artículo en Inglés | MEDLINE | ID: mdl-30509922

RESUMEN

Secondary freshwater salinization, a common anthropogenic alteration, has detrimental, lethal and sub-lethal effects on aquatic biota. Ions from secondary salinization can become toxic to terrestrial and aquatic organisms when exposed to salinized runoff that causes periodic high-concentration pulses. Gradual, low-level (less than 1000 ppm salinity) increases in salt concentrations are also commonly documented in regions with urbanization, agriculture, drilling and mining. Despite widespread low-level salt increases, little is known about the biological and ecological consequences in coupled riparian-stream systems. Recent research indicates lethal and even sub-lethal levels of ions can subsidize or stress microbial decomposer and macroinvertebrate detritivores that could lead to alterations of three riparian-stream pathways: (i) salinized runoff that changes microbial decomposer and macroinvertebrate detritivore and algae performance leading to changes in composition and processing of detrital pools; (ii) riparian plant salt uptake and altered litter chemistry, and litterfall for riparian and aquatic detritivores and their subsequent enrichment, stimulating decomposition rates and production of dissolved and fine organic matter; and (iii) salt consumption in salinized soils could increase riparian detritivore growth, decomposition and dissolved organic matter production. Subsidy-stress and reciprocal flows in coupled riparian-stream connections provide frameworks to identify the extent and magnitude of changes in detrital processing from salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Asunto(s)
Ecosistema , Ríos , Salinidad , Sales (Química)/efectos adversos
6.
Oecologia ; 188(4): 1209-1226, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30367245

RESUMEN

Bark beetle outbreaks are increasing in frequency and intensity, generating massive inventories of dead trees globally. During attacks, trees are pre-inoculated with ophiostomatoid fungi via bark beetles, which has been shown to increase termite presence and feeding. These events may, in turn, alter biogeochemical cycles during decomposition. We examined these relationships by experimentally inoculating dead wood with bluestain fungi in a temperate pine forest. Across ten replicate plots, eight 0.5 m-long logs were inoculated with Ophiostoma minus and eight with distilled water. Half of the logs from each inoculation treatment were covered from above with a mesh cage barrier to exclude aboveground beetles while permitting access by belowground decomposers. After 1 year, significant increases in mass (34%) and decreases in moisture content (- 17%) were observed across all treatments, but no consistent changes in density were evident. C concentrations were 12% greater in bark when barriers were present and 17% greater in sapwood when barriers and inoculation fungi were absent. N concentrations were 16% greater in bark for fungal-inoculated logs and 27% greater when barriers were present. C:N ratios in A horizon soils under fungal-inoculated logs were 12% greater. Furthermore, termites were present fourfold more in fungal-inoculated logs than controls and the presence of termites was associated with 6% less C in sapwood and 11% more N in both sapwood and heartwood. Together these results suggest dead wood generated via bark beetle attacks has different biogeochemical responses during initial decomposition phases, which could have implications for the C status in forests following bark beetle outbreaks.


Asunto(s)
Escarabajos , Pinus , Animales , Bosques , Corteza de la Planta , Madera
7.
J Anim Ecol ; 86(6): 1523-1531, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28892138

RESUMEN

Towards understanding the geography of omnivory, we tested three hypotheses that predict the proportion of animal tissue consumed: the sodium limitation hypothesis predicts that omnivores increase animal consumption in Na-poor environments because Na bioaccumulates from plants to predators; thus, heterotrophs are Na-rich sources. The nitrogen limitation and habitat productivity hypotheses use the same logic to predict more animal consumption in N-poor and productive environments respectively. Omnivory is a common trophic strategy, but what determines the balance of plant and animal tissue omnivores consume is relatively unexplored. Most of what we know comes from single populations at local scales. Here we quantitatively test these three hypotheses at a large geographic scale and across 20 species of omnivorous ants. We tested each hypothesis using N stable isotopes (δ15 N) to quantify the degree of carnivory in ant populations in 20 forests that span 12° latitude from Georgia to Maine, USA. We used the difference in δ15 N between 20 ant conspecifics in 10 genera between two paired forests (10 pairs of 20 forests) that consisted of a coastal and inland forests on the same latitude to determine if the proportion of animal tissue consumed could be predicted based on Na, N or net primary productivity. Sodium gradients accounted for 18% of the variation in δ15 N, 45% if one outlier ant species was omitted. In contrast, the nitrogen limitation and habitat productivity hypotheses, which predict more animal consumption in N-poor and more productive environments respectively, failed to vary with δ15 N. Our results reveal a geography of omnivory driven in part by access to Na.


Asunto(s)
Hormigas/fisiología , Dieta , Isótopos de Nitrógeno/análisis , Sodio/deficiencia , Animales , Carnivoría , Conducta Alimentaria , Estados Unidos
8.
Ecology ; 97(4): 1038-47, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27220219

RESUMEN

We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.


Asunto(s)
Adaptación Fisiológica/fisiología , Hormigas/fisiología , Calor , Fósforo/metabolismo , Bosque Lluvioso , Animales , Hormigas/clasificación , Tamaño Corporal
9.
Glob Chang Biol ; 21(3): 1092-102, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25242246

RESUMEN

The Thermal Adaptation Hypothesis posits that the warmer, aseasonal tropics generates populations with higher and narrower thermal limits. It has largely been tested among populations across latitudes. However, considerable thermal heterogeneity exists within ecosystems: across 31 trees in a Panama rainforest, surfaces exposed to sun were 8 °C warmer and varied more in temperature than surfaces in the litter below. Tiny ectotherms are confined to surfaces and are variously submerged in these superheated boundary layer environments. We quantified the surface CTmin and CTmax s (surface temperatures at which individuals grew torpid and lost motor control, respectively) of 88 ant species from this forest; they ranged in average mass from 0.01 to 57 mg. Larger ants had broader thermal tolerances. Then, for 26 of these species we again tested body CTmax s using a thermal dry bath to eliminate boundary layer effects: body size correlations observed previously disappeared. In both experiments, consistent with Thermal Adaptation, CTmax s of canopy ants averaged 3.5-5 °C higher than populations that nested in the shade of the understory. We impaled thermocouples in taxidermy mounts to further quantify the factors shaping operative temperatures for four ant species representing the top third (1-30 mg) of the size distribution. Extrapolations suggest the smallest 2/3rds of species reach thermal equilibrium in <10s. Moreover, the large ants that walk above the convective superheated surface air also showed more net heating by solar radiation, with operative temperatures up to 4 °C higher than surrounding air. The thermal environments of this Panama rainforest generate a range of CTmax subsuming 74% of those previously recorded for ant populations worldwide. The Thermal Adaptation Hypothesis can be a powerful tool in predicting diversity of thermal limits within communities. Boundary layer temperatures are likely key to predicting the future of Earth's tiny terrestrial ectotherm populations.


Asunto(s)
Hormigas/fisiología , Bosque Lluvioso , Aclimatación , Animales , Panamá , Temperatura
10.
Oecologia ; 177(2): 571-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25519175

RESUMEN

Nutrient pulses can profoundly impact ecosystem processes and urine is a frequently deposited source of N and K, and Na. Na is unimportant to plants, but its addition can increase decomposition and change invertebrate community structure in Na-poor tropical forests. Here we used synthetic urine to separate the effects of Na from urine's other nutrients and contrasted their roles in promoting decomposition and detritivore recruitment in both a Na-poor inland Ecuadorian and Na-rich coastal Panamanian tropical forest. After 2 days, invertebrate communities did not vary among +Na, H2O, Urine+Na, and Urine-Na treatments. But after 2 weeks, Ecuador wood, but not cellulose, decomposition was twofold higher on Urine+Na and +Na plots compared to H2O and Urine-Na plots accompanied by >20-fold increases in termite abundance on these plots. Panama, in contrast, showed no effect of Na on decomposition. In both forests, plots fertilized with urine had nearly twofold decrease in detritivores after 2 weeks that was likely a shock effect from ammonification. Moreover, the non-Na nutrients in urine did not enhance decomposition at this time scale. On control plots, Panama had higher decomposition rates for both cellulose and wood than Ecuador, but the addition of Na in Ecuador alleviated these differences. These results support the hypothesis that in Na-poor tropical forests, urine can enhance wood decomposition and generate an important source of heterogeneity in the abundance and activity of brown food webs.


Asunto(s)
Ecosistema , Bosques , Sodio/análisis , Orina/química , Animales , Celulosa/química , Ecuador , Isópteros/fisiología , Panamá , Densidad de Población , Dinámica Poblacional , Sodio/química , Clima Tropical , Madera/química
11.
Ecology ; 95(4): 795-800, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24933800

RESUMEN

Added Na was used to determine whether litter decomposition and associated fungal biomass and termites are limited by Na availability in a lowland tropical rainforest at Yasuni, Ecuador. This is a partial test of the "sodium ecosystem respiration" (SER) hypothesis that posits Na is critical for consumers but not plants, that Na shortfall is more likely on highly weathered soils inland from oceanic aerosols, and that this shortfall results in decreased decomposer activity. We fertilized 4 x 4 m plots twice a month for a year with quantities of Na comparable to those falling on a coastal tropical rainforest. Decomposition rates of four substrates were consistently higher on +NaCl plots by up to 70% for cellulose, and 78%, 68%, and 29% for three woods of increasing percentage lignin. The density of termite workers averaged 17-fold higher on +NaCl plots; fungal biomass failed to differ. After controlling for temperature and precipitation, which co-limit gross primay productivity (GPP) and ecosystem respiration (ER), these results suggest that Na shortfall is an agent enhancing the storage of coarse woody debris in inland tropical forests.


Asunto(s)
Ecosistema , Hongos/efectos de los fármacos , Isópteros/fisiología , Cloruro de Sodio/farmacología , Árboles , Animales , Biodegradación Ambiental , Fertilizantes , Hongos/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Cloruro de Sodio/química
12.
Proc Natl Acad Sci U S A ; 106(46): 19405-9, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19884505

RESUMEN

Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13-18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO(4)) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl(2), and CaCl(2)) relative to NaCl and three other Na compounds (NaNO(3), Na(3)PO(4), and Na(2)SO(4)). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation.


Asunto(s)
Hormigas/metabolismo , Carbono/metabolismo , Isópteros/metabolismo , Sodio/deficiencia , Árboles/metabolismo , Clima Tropical , Animales , Celulosa/metabolismo , Lignina/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Lluvia , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Árboles/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...