Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Seizure ; 117: 164-173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432080

RESUMEN

Epilepsy is increasingly recognised as a brain network disorder and many studies have investigated functional connectivity (FC) in children with epilepsy using functional MRI (fMRI). This systematic review of fMRI studies, published up to November 2023, investigated profiles of FC changes and their clinical relevance in children with focal epilepsy compared to healthy controls. A literature search in PubMed and Web of Science yielded 62 articles. We categorised the results into three groups: 1) differences in correlation-based FC between patients and controls; 2) differences in other FC measures between patients and controls; and 3) associations between FC and disease variables (for example, age of onset), cognitive and seizure outcomes. Studies revealed either increased or decreased FC across multiple brain regions in children with focal epilepsy. However, findings lacked consistency: conflicting FC alterations (decreased and increased FC) co-existed within or between brain regions across all focal epilepsy groups. The studies demonstrated overall that 1) interhemispheric connections often displayed abnormal connectivity and 2) connectivity within and between canonical functional networks was decreased, particularly for the default mode network. Focal epilepsy disrupted FC in children both locally (e.g., seizure-onset zones, or within-brain subnetworks) and globally (e.g., whole-brain network architecture). The wide variety of FC study methodologies limits clinical application of the results. Future research should employ longitudinal designs to understand the evolution of brain networks during the disease course and explore the potential of FC biomarkers for predicting cognitive and postsurgical seizure outcomes.


Asunto(s)
Encéfalo , Epilepsias Parciales , Imagen por Resonancia Magnética , Humanos , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/diagnóstico por imagen , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Conectoma
2.
Hum Brain Mapp ; 45(2): e26578, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339907

RESUMEN

Fibre tract delineation from diffusion magnetic resonance imaging (MRI) is a valuable clinical tool for neurosurgical planning and navigation, as well as in research neuroimaging pipelines. Several popular methods are used for this task, each with different strengths and weaknesses making them more or less suited to different contexts. For neurosurgical imaging, priorities include ease of use, computational efficiency, robustness to pathology and ability to generalise to new tracts of interest. Many existing methods use streamline tractography, which may require expert neuroimaging operators for setting parameters and delineating anatomical regions of interest, or suffer from as a lack of generalisability to clinical scans involving deforming tumours and other pathologies. More recently, data-driven approaches including deep-learning segmentation models and streamline clustering methods have improved reproducibility and automation, although they can require large amounts of training data and/or computationally intensive image processing at the point of application. We describe an atlas-based direct tract mapping technique called 'tractfinder', utilising tract-specific location and orientation priors. Our aim was to develop a clinically practical method avoiding streamline tractography at the point of application while utilising prior anatomical knowledge derived from only 10-20 training samples. Requiring few training samples allows emphasis to be placed on producing high quality, neuro-anatomically accurate training data, and enables rapid adaptation to new tracts of interest. Avoiding streamline tractography at the point of application reduces computational time, false positives and vulnerabilities to pathology such as tumour deformations or oedema. Carefully filtered training streamlines and track orientation distribution mapping are used to construct tract specific orientation and spatial probability atlases in standard space. Atlases are then transformed to target subject space using affine registration and compared with the subject's voxel-wise fibre orientation distribution data using a mathematical measure of distribution overlap, resulting in a map of the tract's likely spatial distribution. This work includes extensive performance evaluation and comparison with benchmark techniques, including streamline tractography and the deep-learning method TractSeg, in two publicly available healthy diffusion MRI datasets (from TractoInferno and the Human Connectome Project) in addition to a clinical dataset comprising paediatric and adult brain tumour scans. Tract segmentation results display high agreement with established techniques while requiring less than 3 min on average when applied to a new subject. Results also display higher robustness than compared methods when faced with clinical scans featuring brain tumours and resections. As well as describing and evaluating a novel proposed tract delineation technique, this work continues the discussion on the challenges surrounding the white matter segmentation task, including issues of anatomical definitions and the use of quantitative segmentation comparison metrics.


Asunto(s)
Sustancia Blanca , Adulto , Humanos , Niño , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen
3.
Hum Brain Mapp ; 45(1): e26545, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070181

RESUMEN

Preterm birth has been associated with altered microstructural properties of the white matter and lower cognitive ability in childhood and adulthood. Due to methodological limitations of the diffusion tensor model, it is not clear whether alterations in myelination or variation in fibre orientation are driving these differences. Novel models applied to multi-shell diffusion imaging have been used to disentangle these effects, but to date this has not been used to study the preterm brain in adulthood. This study investigated whether novel advanced diffusion MRI metrics such as microscopic anisotropy and orientation dispersion are altered in adults born preterm, and whether this was associated with cognitive performance. Seventy-two preterm born participants (<37 weeks gestational age) were recruited from a 1982-1984 cohort (33 males, mean age 33.5 ± 1.0 years). Seventy-two term born (>37 weeks gestational age) controls (34 males, mean age 30.9 ± 4.0 years) were recruited from the general population. Tensor FA was calculated with FSL, while microscopic FA and orientation dispersion entropy (ODE) were estimated using the Spherical Mean Technique (SMT). Estimated Full Scale IQ (FSIQ), Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) were obtained from the WASI-II (abbreviated) IQ test. Voxel-wise comparisons using FSL's tract-based spatial statistics were performed to test between-group differences in diffusion MRI metrics as well as within-group associations of diffusion MRI metrics and IQ outcomes. The preterm group had significantly lower FSIQ, VCI and PRI scores. Preterm subjects demonstrated widespread decreases in ODE reflecting increased fibre dispersion, but no differences in microscopic FA. Tensor FA was increased in a small area in the anterior corona radiata. Lower FA values in the preterm population were associated with lower FSIQ and PRI scores. An increase in fibre dispersion in white matter and lower IQ scores after preterm birth exist in adulthood. Advanced diffusion MRI metrics such as the orientation dispersion entropy can be used to monitor white matter alterations across the lifespan in preterm born individuals. Although not significantly different between preterm and term groups, tensor FA values in the preterm group were associated with cognitive outcome.


Asunto(s)
Nacimiento Prematuro , Sustancia Blanca , Masculino , Adulto , Femenino , Humanos , Recién Nacido , Sustancia Blanca/diagnóstico por imagen , Nacimiento Prematuro/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética
4.
J Inherit Metab Dis ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044746

RESUMEN

Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123 I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123 I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy.

5.
Front Psychol ; 14: 1158333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275707

RESUMEN

Introduction: Many studies argue that exposure to, and use of, multiple languages in childhood has beneficial effects beyond the linguistic domain, including on executive functions (EFs), although recent evidence remains controversial. EFs encompass abilities necessary for regulating goal-directed behaviours in everyday life and, in children, EFs strongly predict later academic achievement and wellbeing. One theoretical framework distinguishes "hot" EFs, which have a reward or affective component, from "cool" EFs that do not. How exposure to more than one language in early childhood modulates hot and cool EFs in later childhood, alongside other environmental and cognitive factors, remains poorly understood. Methods: We analysed data from the UK Millennium Cohort Study, a large-scale, nationally representative longitudinal cohort study, which provides information on perinatal and environmental factors (e.g., languages spoken in the home, maternal education) alongside cognitive measures assessed in English. At 3 years, we examined the effect of multiple language exposure on the Bracken school readiness assessment (knowledge of shapes, letters, etc.), and on naming vocabulary. At age 11, we examined the predictors of cool EF, measured with a spatial working memory task; hot EF, measured using a gambling task; and vocabulary, measured using a verbal reasoning task. Results: Data from 16,134 children were analysed. At age 3, a negative effect of multiple language exposure on school readiness and vocabulary was observed, but the difference was smaller with higher maternal education. At age 11, there was also a negative effect on vocabulary, but smaller than that observed at age 3. There were no direct effects of language exposure on either spatial working memory or gambling scores. For hot EF, the multiple language exposure effects were indirect, mediated by early cognition, and the most significant predictor of gambling strategy was sex. For cool EF, school readiness and vocabulary at age 3 were the strongest predictors. Discussion: Our findings, based on a UK population sample, highlight the importance of considering socioeconomic status and early-life abilities when interpreting the effects of language environments on hot and cool EFs.

6.
Front Neurol ; 14: 1101223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860579

RESUMEN

Background and objectives: Cognitive difficulties in people with sickle cell anemia (SCA) are related to lower processing speed index (PSI) and working memory index (WMI). However, risk factors are poorly understood so preventative strategies have not been explored. Brain volumes, specifically white matter volumes (WMV) which increases through early adulthood, have been associated with better cognition in healthy typically developing individuals. In patients with SCA, the reduced WMV and total subcortical volumes noted could explain cognitive deficits. We therefore examined developmental trajectories for regional brain volumes and cognitive endpoints in patients with SCA. Methods: Data from two cohorts, the Sleep and Asthma Cohort and Prevention of Morbidity in SCA, were available. MRI data included T1-weighted axial images, pre-processed before regional volumes were extracted using Free-surfer. PSI and WMI from the Weschler scales of intelligence were used to test neurocognitive performance. Hemoglobin, oxygen saturation, hydroxyurea treatment and socioeconomic status from education deciles were available. Results: One hundred and twenty nine patients (66 male) and 50 controls (21 male) aged 8-64 years were included. Brain volumes did not significantly differ between patients and controls. Compared with controls, PSI and WMI were significantly lower in patients with SCA, predicted by increasing age and male sex, with lower hemoglobin in the model for PSI but no effect of hydroxyurea treatment. In male patients with SCA only, WMV, age and socioeconomic status predicted PSI, while total subcortical volumes predicted WMI. Age positively and significantly predicted WMV in the whole group (patients + controls). There was a trend for age to negatively predict PSI in the whole group. For total subcortical volume and WMI, age predicted decrease only in the patient group. Developmental trajectory analysis revealed that PSI only was significantly delayed in patients at 8 years of age; the rate of development for the cognitive and brain volume data did not differ significantly from controls. Discussion: Increasing age and male sex negatively impact cognition in SCA, with processing speed, also predicted by hemoglobin, delayed by mid childhood. Associations with brain volumes were seen in males with SCA. Brain endpoints, calibrated against large control datasets, should be considered for randomized treatment trials.

7.
Blood Adv ; 7(11): 2297-2308, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35947137

RESUMEN

In sickle cell disease, the relative importance of reduced hemoglobin (Hb) and peripheral oxygen saturation on brain structure remains uncertain. We applied graph-theoretical analysis to diffusion magnetic resonance imaging data to investigate the effect of structural brain connectivity on cognitive function, alongside the presence or absence, number, and volume of silent cerebral infarction. In patients, we investigated the relationships between network properties, blood oxygenation, and cognition (working memory and processing speed indices). Based on streamline counts and fractional anisotropy, we identified a subnetwork with weakened connectivity in 92 patients with sickle cell disease (91 homozygous for HbS [HbSS], 1 heterozygote with HbSß0 thalassemia; 49 males; aged 8.0 to 38.8 y), compared with 54 control subjects (22 males; aged 6.7 to 30.6 y). Multiple regression analyses showed a significant effect of Hb on full-network edge density (P < .05) and of peripheral oxygen saturation on streamline-weighted subnetwork efficiency (P < .01). There were effects of fractional anisotropy-weighted full-network and subnetwork efficiency on working memory index (both P < .05), and of streamline-weighted subnetwork efficiency on processing speed index (P = .05). However, there were no effects of presence, number or volume of silent cerebral infarcts. Streamline-weighted efficiency was progressively lower with lower oxygen saturation, with a downstream effect on the processing speed index. In path analysis, indirect relationships between blood oxygenation and cognition, mediated by network properties, were better supported than direct alternatives, with an indirect relationship between low oxygen saturation and processing speed index in patients, mediated by structural connectivity efficiency in a subnetwork of the brain differing from control subjects. Our findings are consistent with the notion that cognitive impairment is primarily mediated by hypoxic-ischemic effects on normal-appearing white matter and highlight the utility of network-based methods in providing biomarkers of cognitive dysfunction in patients with sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Sustancia Blanca , Masculino , Humanos , Cognición , Encéfalo/patología , Sustancia Blanca/patología , Sustancia Blanca/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Anemia de Células Falciformes/patología
8.
Front Neurol ; 13: 867329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847220

RESUMEN

Research in sickle cell anemia (SCA) has used, with limited race-matched control data, binary categorization of patients according to the presence or absence of silent cerebral infarction (SCI). SCI have primarily been identified using low-resolution MRI, with radiological definitions varying in lesion length and the requirement for abnormality on both fluid attenuated inversion recovery (FLAIR) and T1-weighted images. We aimed to assess the effect of published SCI definitions on global, regional, and lobar lesion metrics and their value in predicting cognition. One hundred and six patients with SCA and 48 controls aged 8-30 years underwent 3T MRI with a high-resolution FLAIR sequence and Wechsler cognitive assessment. Prevalence, number, and volume of lesions were calculated using a semi-automated pipeline for SCI defined as: (1) Liberal: any length (L-SCI); (2) Traditional: >3 mm in greatest dimension (T-SCI); (3) Restrictive; >3 mm in greatest dimension with a corresponding T1-weighted hypo-intensity (R-SCI). Globally, as hypothesized, there were large effects of SCI definition on lesion metrics in patients and controls, with prevalence varying from 24-42% in patients, and 4-23% in controls. However, contrary to hypotheses, there was no effect of any global metric on cognition. Regionally, there was a consistent distribution of SCI in frontal and parietal deep and juxta-cortical regions across definitions and metrics in patients, but no consistent distribution in controls. Effects of regional SCI metrics on cognitive performance were of small magnitude; some were paradoxical. These findings expose the challenges associated with the widespread use of SCI presence as a biomarker of white-matter injury and cognitive dysfunction in cross-sectional high-resolution MRI studies in patients with SCA. The findings indicate that with high-resolution MRI: (1) radiological definitions have a large effect on resulting lesion groups, numbers, and volumes; (2) there is a non-negligible prevalence of lesions in young healthy controls; and (3) at the group-level, there is no cross-sectional association between global lesion metrics and general cognitive impairment irrespective of lesion definition and metric. With high-resolution multi-modal MRI, the dichotomy of presence or absence of SCI does not appear to be a sensitive biomarker for the detection of functionally significant pathology; the search for appropriate endpoints for clinical treatment trials should continue.

9.
Magn Reson Med ; 88(5): 2157-2166, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35877787

RESUMEN

PURPOSE: To develop a robust reconstruction pipeline for EPI data that enables 2D Nyquist phase error correction using sensitivity encoding without incurring major noise artifacts in low SNR data. METHODS: SENSE with 2D phase error correction (PEC-SENSE) was combined with channel-wise noise removal using Marcenko-Pastur principal component analysis (MPPCA) to simultaneously eliminate Nyquist ghost artifacts in EPI data and mitigate the noise amplification associated with phase correction using parallel imaging. The proposed pipeline (coined SPECTRE) was validated in phantom DW-EPI data using the accuracy and precision of diffusion metrics; ground truth values were obtained from data acquired with a spin echo readout. Results from the SPECTRE pipeline were compared against PEC-SENSE reconstructions with three alternate denoising strategies: (i) no denoising; (ii) denoising of magnitude data after image formation; (iii) denoising of complex data after image formation. SPECTRE was then tested using high b $$ b $$ -value (i.e., low SNR) diffusion data (up to b = 3000 $$ b=3000 $$ s/mm 2 $$ {}^2 $$ ) in four healthy subjects. RESULTS: Noise amplification associated with phase error correction incurred a 23% bias in phantom mean diffusivity (MD) measurements. Phantom MD estimates using the SPECTRE pipeline were within 8% of the ground truth value. In healthy volunteers, the SPECTRE pipeline visibly corrected Nyquist ghost artifacts and reduced associated noise amplification in high b $$ b $$ -value data. CONCLUSION: The proposed reconstruction pipeline is effective in correcting low SNR data, and improves the accuracy and precision of derived diffusion metrics.


Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Algoritmos , Artefactos , Encéfalo , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen
11.
Pediatr Res ; 91(5): 1207-1214, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34168271

RESUMEN

BACKGROUND: Breast milk has been associated with lower risk of infection and necrotising enterocolitis (NEC) and improved long-term cognitive outcomes in preterm infants but, if unsupplemented, does not meet the nutritional requirements of preterm infants. METHODS: Preterm infants were randomised to receive a high nutrient intervention diet: preterm formula (PTF) or the standard diet: term formula (TF) or banked donor breast milk (BBM), either as their sole diet or as supplement to maternal breast milk (MBM). IQ tests were performed at ages 7, 15, 20, and 30 years. RESULTS: An increase in MBM and BBM intake was associated with a lower chance of neonatal infection/NEC. Neonatal infection/NEC was associated with lower Full Scale IQ (FSIQ) and Performance IQ (PIQ) score at ages 7 and 30 years. The relationship between higher intake of MBM and PIQ at age 7 years was partly mediated by neonatal infection/NEC. The intervention diet was associated with higher Verbal IQ (VIQ) scores compared to the standard diet. There was no evidence that these effects changed from childhood through to adulthood. CONCLUSIONS: Neonatal diet is an important modifiable factor that can affect long-term cognitive outcome through a 'human milk' factor, protecting against infection/NEC, and a 'nutrient content' factor. IMPACT: This is the first study to demonstrate the effects of neonatal infection/necrotising enterocolitis (NEC) on IQ in the same cohort in childhood and adulthood. Diet can be a key factor in long-term cognitive outcome in people born preterm by preventing neonatal infection/NEC and providing adequate nutrients. Human milk, whether MBM or BBM, is associated with a reduced risk of infection/NEC. A higher nutrient diet is associated with better cognitive outcome in childhood. Performance IQ is particularly vulnerable to the effects of infection/NEC and verbal IQ to the quantity of (macro)nutrients in the diet.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Adolescente , Adulto , Niño , Cognición , Enterocolitis Necrotizante/prevención & control , Femenino , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Recien Nacido Prematuro , Leche Humana , Adulto Joven
13.
F1000Res ; 9: 370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528666

RESUMEN

Growing up in a bilingual environment is becoming increasingly common. Yet, we know little about how this enriched language environment influences the connectivity of children's brains. Behavioural research in children and adults has shown that bilingualism experience may boost executive control (EC) skills, such as inhibitory control and attention. Moreover, increased structural and functional (resting-state) connectivity in language-related and EC-related brain networks is associated with increased executive control in bilingual adults. However, how bilingualism factors alter brain connectivity early in brain development remains poorly understood. We will combine standardised tests of attention with structural and resting-state functional magnetic resonance imaging (MRI) in bilingual children. This study will allow us to address an important field of inquiry within linguistics and developmental cognitive neuroscience by examining the following questions: Does bilingual experience modulate connectivity in language-related and EC-related networks in children? Do differences in resting-state brain connectivity correlate with differences in EC skills (specifically attention skills)? How do bilingualism-related factors, such as age of exposure to two languages, language usage and proficiency, modulate brain connectivity? We will collect structural and functional MRI, and quantitative measures of EC and language skills from two groups of English-Greek bilingual children - 20 simultaneous bilinguals (exposure to both languages from birth) and 20 successive bilinguals (exposure to English between the ages of 3 and 5 years) - and 20 English monolingual children, 8-10 years old. We will compare connectivity measures and attention skills between monolinguals and bilinguals to examine the effects of bilingual exposure. We will also examine to what extent bilingualism factors predict brain connectivity in EC and language networks. Overall, we hypothesize that connectivity and EC will be enhanced in bilingual children compared to monolingual children, and each outcome will be modulated by age of exposure to two languages and by bilingual language usage.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Función Ejecutiva , Multilingüismo , Niño , Preescolar , Humanos , Lenguaje , Reproducibilidad de los Resultados
14.
Front Neurosci ; 14: 269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322185

RESUMEN

BACKGROUND: Surgery is a key approach for achieving seizure freedom in children with focal onset epilepsy. However, the resection can affect or be in the vicinity of the optic radiations. Multi-shell diffusion MRI and tractography can better characterize tissue structure and provide guidance to help minimize surgical related deficits. Whilst in adults tractography has been used to demonstrate that damage to the optic radiations leads to postoperative visual field deficits, this approach has yet to be properly explored in children. OBJECTIVE: To demonstrate the capabilities of multi-shell diffusion MRI and tractography in characterizing microstructural changes in children with epilepsy pre- and post-surgery affecting the occipital, parietal or temporal lobes. METHODS: Diffusion Tensor Imaging and the Spherical Mean Technique were used to investigate the microstructure of the optic radiations. Furthermore, tractography was used to evaluate whether pre-surgical reconstructions of the optic radiations overlap with the resection margin as measured using anatomical post-surgical T1-weighted MRI. RESULTS: Increased diffusivity in patients compared to controls at baseline was observed with evidence of decreased diffusivity, anisotropy, and neurite orientation distribution in contralateral hemisphere after surgery. Pre-surgical optic radiation tractography overlapped with post-surgical resection margins in 20/43 (46%) children, and where visual data was available before and after surgery, the presence of overlap indicated a visual field deficit. CONCLUSION: This is the first report in a pediatric series which highlights the relevance of tractography for future pre-surgical evaluation in children undergoing epilepsy surgery and the usefulness of multi-shell diffusion MRI to characterize brain microstructure in these patients.

15.
Sci Rep ; 10(1): 3620, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32108146

RESUMEN

Structural network-based approaches can assess white matter connections revealing topological alterations in multiple sclerosis (MS). However, principal network (PN) organisation and its clinical relevance in MS has not been explored yet. Here, structural networks were reconstructed from diffusion data in 58 relapsing-remitting MS (RRMS), 28 primary progressive MS (PPMS), 36 secondary progressive (SPMS) and 51 healthy controls (HCs). Network hubs' strengths were compared with HCs. Then, PN analysis was performed in each clinical subtype. Regression analysis was applied to investigate the associations between nodal strength derived from the first and second PNs (PN1 and PN2) in MS, with clinical disability. Compared with HCs, MS patients had preserved hub number, but some hubs exhibited reduced strength. PN1 comprised 10 hubs in HCs, RRMS and PPMS but did not include the right thalamus in SPMS. PN2 comprised 10 hub regions with intra-hemispheric connections in HCs. In MS, this subnetwork did not include the right putamen whilst in SPMS the right thalamus was also not included. Decreased nodal strength of the right thalamus and putamen from the PNs correlated strongly with higher clinical disability. These PN analyses suggest distinct patterns of disruptions in MS subtypes which are clinically relevant.


Asunto(s)
Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/psicología , Red Nerviosa , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Estudios de Cohortes , Personas con Discapacidad/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Actividad Motora , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología
16.
Mult Scler ; 26(7): 774-785, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31074686

RESUMEN

BACKGROUND: The potential of multi-shell diffusion imaging to produce accurate brain connectivity metrics able to unravel key pathophysiological processes in multiple sclerosis (MS) has scarcely been investigated. OBJECTIVE: To test, in patients with a clinically isolated syndrome (CIS), whether multi-shell imaging-derived connectivity metrics can differentiate patients from controls, correlate with clinical measures, and perform better than metrics obtained with conventional single-shell protocols. METHODS: Nineteen patients within 3 months from the CIS and 12 healthy controls underwent anatomical and 53-direction multi-shell diffusion-weighted 3T images. Patients were cognitively assessed. Voxel-wise fibre orientation distribution functions were estimated and used to obtain network metrics. These were also calculated using a conventional single-shell diffusion protocol. Through linear regression, we obtained effect sizes and standardised regression coefficients. RESULTS: Patients had lower mean nodal strength (p = 0.003) and greater network modularity than controls (p = 0.045). Greater modularity was associated with worse cognitive performance in patients, even after accounting for lesion load (p = 0.002). Multi-shell-derived metrics outperformed single-shell-derived ones. CONCLUSION: Connectivity-based nodal strength and network modularity are abnormal in the CIS. Furthermore, the increased network modularity observed in patients, indicating microstructural damage, is clinically relevant. Connectivity analyses based on multi-shell imaging can detect potentially relevant network changes in early MS.


Asunto(s)
Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Sustancia Gris/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/patología , Red Nerviosa/patología , Estudios Retrospectivos , Sustancia Blanca/patología
17.
Front Psychol ; 10: 1942, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551853

RESUMEN

Prematurity presents a risk for higher order cognitive functions. Some of these deficits manifest later in development, when these functions are expected to mature. However, the causes and consequences of prematurity are still unclear. We conducted a longitudinal study to first identify clinical predictors of ultrasound brain abnormalities in 196 children born very preterm (VP; gestational age ≤32 weeks) and with very low birth weight (VLBW; birth weight ≤1500 g). At ages 8-16, the subset of VP-VLBW children without neurological findings (124) were invited for a neuropsychological assessment and an MRI scan (41 accepted). Of these, 29 met a rigorous criterion for MRI quality and an age, and gender-matched control group (n = 14) was included in this study. The key findings in the VP-VLBW neonates were: (a) 37% of the VP-VLBW neonates had ultrasound brain abnormalities; (b) gestational age and birth weight collectively with hospital course (i.e., days in hospital, neonatal intensive care, mechanical ventilation and with oxygen therapy, surgeries, and retinopathy of prematurity) predicted ultrasound brain abnormalities. At ages 8-16, VP-VLBW children showed: a) lower intelligent quotient (IQ) and executive function; b) decreased gray and white matter (WM) integrity; (c) IQ correlated negatively with cortical thickness in higher order processing cortical areas. In conclusion, our data indicate that facets of executive function and IQ are the most affected in VP-VLBW children likely due to altered higher order cortical areas and underlying WM.

18.
Neuroimage ; 199: 418-426, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31185275

RESUMEN

Connectivity-based parcellation of subcortical structures using diffusion tractography is now a common paradigm in neuroscience. These analyses often imply voxel-level specificity of connectivity, and the formation of compact, spatially coherent clusters is often taken as strong imaging-based evidence for anatomically distinct subnuclei in an individual. In this study, we demonstrate that internal structure in diffusion anisotropy is not necessary for a plausible parcellation to be obtained, by spatially permuting diffusion parameters within the thalami and repeating the parcellation. Moreover, we show that, in a winner-takes-all paradigm, most voxels receive the same label before and after this shuffling process-a finding that is stable across image acquisitions and tractography algorithms. We therefore suggest that such parcellations should be interpreted with caution.


Asunto(s)
Imagen de Difusión Tensora/normas , Tálamo/anatomía & histología , Adulto , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Tálamo/diagnóstico por imagen
19.
Biostatistics ; 20(2): 218-239, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29325029

RESUMEN

Neuroconductor (https://neuroconductor.org) is an open-source platform for rapid testing and dissemination of reproducible computational imaging software. The goals of the project are to: (i) provide a centralized repository of R software dedicated to image analysis, (ii) disseminate software updates quickly, (iii) train a large, diverse community of scientists using detailed tutorials and short courses, (iv) increase software quality via automatic and manual quality controls, and (v) promote reproducibility of image data analysis. Based on the programming language R (https://www.r-project.org/), Neuroconductor starts with 51 inter-operable packages that cover multiple areas of imaging including visualization, data processing and storage, and statistical inference. Neuroconductor accepts new R package submissions, which are subject to a formal review and continuous automated testing. We provide a description of the purpose of Neuroconductor and the user and developer experience.


Asunto(s)
Diagnóstico por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Programas Informáticos , Femenino , Humanos , Masculino
20.
J Neurol Neurosurg Psychiatry ; 90(2): 219-226, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30467210

RESUMEN

OBJECTIVE: To evaluate whether structural brain network metrics correlate better with clinical impairment and information processing speed in multiple sclerosis (MS) beyond atrophy measures and white matter lesions. METHODS: This cross-sectional study included 51 healthy controls and 122 patients comprising 58 relapsing-remitting, 28 primary progressive and 36 secondary progressive. Structural brain networks were reconstructed from diffusion-weighted MRIs and standard metrics reflecting network density, efficiency and clustering coefficient were derived and compared between subjects' groups. Stepwise linear regression analyses were used to investigate the contribution of network measures that explain clinical disability (Expanded Disability Status Scale (EDSS)) and information processing speed (Symbol Digit Modalities Test (SDMT)) compared with conventional MRI metrics alone and to determine the best statistical model that explains better EDSS and SDMT. RESULTS: Compared with controls, network efficiency and clustering coefficient were reduced in MS while these measures were also reduced in secondary progressive relative to relapsing-remitting patients. Structural network metrics increase the variance explained by the statistical models for clinical and information processing dysfunction. The best model for EDSS showed that reduced network density and global efficiency and increased age were associated with increased clinical disability. The best model for SDMT showed that lower deep grey matter volume, reduced efficiency and male gender were associated with worse information processing speed. CONCLUSIONS: Structural topological changes exist between subjects' groups. Network density and global efficiency explained disability above non-network measures, highlighting that network metrics can provide clinically relevant information about MS pathology.


Asunto(s)
Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/psicología , Adulto , Estudios de Casos y Controles , Estudios Transversales , Evaluación de la Discapacidad , Femenino , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Procesos Mentales/fisiología , Persona de Mediana Edad , Modelos Estadísticos , Esclerosis Múltiple/fisiopatología , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...