Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Microbiol Resour Announc ; : e0116823, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651916

RESUMEN

We sequenced the genome of a hirame novirhabdovirus isolate recovered from a white bass (Morone chrysops). Hirame novirhabdoviruses are in the genus Novirhabdovirus, along with infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. This detection highlights that the full host range of rhabdoviruses in fish is not fully understood.

2.
Sci Rep ; 14(1): 4493, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38396245

RESUMEN

In healthy hearts myocytes are typically coupled to nearest neighbours through gap junctions. Under pathological conditions such as fibrosis, or in scar tissue, or across ablation lines myocytes can uncouple from their neighbours. Electrical conduction may still occur via fibroblasts that not only couple proximal myocytes but can also couple otherwise unconnected regions. We hypothesise that such coupling can alter conduction between myocytes via introduction of delays or by initiation of premature stimuli that can potentially result in reentry or conduction blocks. To test this hypothesis we have developed several 2-cell motifs and investigated the effect of fibroblast mediated electrical coupling between uncoupled myocytes. We have identified various regimes of myocyte behaviour that depend on the strength of gap-junctional conductance, connection topology, and parameters of the myocyte and fibroblast models. These motifs are useful in developing a mechanistic understanding of long-distance coupling on myocyte dynamics and enable the characterisation of interaction between different features such as myocyte and fibroblast properties, coupling strengths and pacing period. They are computationally inexpensive and allow for incorporation of spatial effects such as conduction velocity. They provide a framework for constructing scar tissue boundaries and enable linking of cellular level interactions with scar induced arrhythmia.


Asunto(s)
Cicatriz , Miocitos Cardíacos , Humanos , Cicatriz/metabolismo , Uniones Comunicantes/metabolismo , Comunicación Celular , Fibroblastos/metabolismo
3.
Artif Intell Med ; 143: 102610, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37673578

RESUMEN

Automatic segmentation of the cardiac left ventricle with scars remains a challenging and clinically significant task, as it is essential for patient diagnosis and treatment pathways. This study aimed to develop a novel framework and cost function to achieve optimal automatic segmentation of the left ventricle with scars using LGE-MRI images. To ensure the generalization of the framework, an unbiased validation protocol was established using out-of-distribution (OOD) internal and external validation cohorts, and intra-observation and inter-observer variability ground truths. The framework employs a combination of traditional computer vision techniques and deep learning, to achieve optimal segmentation results. The traditional approach uses multi-atlas techniques, active contours, and k-means methods, while the deep learning approach utilizes various deep learning techniques and networks. The study found that the traditional computer vision technique delivered more accurate results than deep learning, except in cases where there was breath misalignment error. The optimal solution of the framework achieved robust and generalized results with Dice scores of 82.8 ± 6.4% and 72.1 ± 4.6% in the internal and external OOD cohorts, respectively. The developed framework offers a high-performance solution for automatic segmentation of the left ventricle with scars using LGE-MRI. Unlike existing state-of-the-art approaches, it achieves unbiased results across different hospitals and vendors without the need for training or tuning in hospital cohorts. This framework offers a valuable tool for experts to accomplish the task of fully automatic segmentation of the left ventricle with scars based on a single-modality cardiac scan.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Humanos , Ventrículos Cardíacos/diagnóstico por imagen , Cicatriz/diagnóstico por imagen , Computadores
4.
Chaos ; 33(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307158

RESUMEN

Atrial and ventricular fibrillation (AF/VF) are characterized by the repetitive regeneration of topological defects known as phase singularities (PSs). The effect of PS interactions has not been previously studied in human AF and VF. We hypothesized that PS population size would influence the rate of PS formation and destruction in human AF and VF, due to increased inter-defect interaction. PS population statistics were studied in computational simulations (Aliev-Panfilov), human AF and human VF. The influence of inter-PS interactions was evaluated by comparison between directly modeled discrete-time Markov chain (DTMC) transition matrices of the PS population changes, and M/M/∞ birth-death transition matrices of PS dynamics, which assumes that PS formations and destructions are effectively statistically independent events. Across all systems examined, PS population changes differed from those expected with M/M/∞. In human AF and VF, the formation rates decreased slightly with PS population when modeled with the DTMC, compared with the static formation rate expected through M/M/∞, suggesting new formations were being inhibited. In human AF and VF, the destruction rates increased with PS population for both models, with the DTMC rate increase exceeding the M/M/∞ estimates, indicating that PS were being destroyed faster as the PS population grew. In human AF and VF, the change in PS formation and destruction rates as the population increased differed between the two models. This indicates that the presence of additional PS influenced the likelihood of new PS formation and destruction, consistent with the notion of self-inhibitory inter-PS interactions.


Asunto(s)
Fibrilación Atrial , Fibrilación Ventricular , Humanos , Atrios Cardíacos , Cadenas de Markov , Probabilidad
5.
J Vet Diagn Invest ; : 10406387231173332, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37203453

RESUMEN

Rapid growth in aquaculture has resulted in high-density production systems in ecologically and geographically novel conditions in which the emergence of diseases is inevitable. Well-characterized methods for detection and surveillance of infectious diseases are vital for rapid identification, response, and recovery to protect economic and food security. We implemented a proof-of-concept approach for virus detection using a known high-consequence fish pathogen, infectious salmon anemia virus (ISAV), as the archetypal pathogen. In fish infected with ISAV, we integrated histopathology, virus isolation, whole-genome sequencing (WGS), electron microscopy (EM), in situ hybridization (ISH), and reverse transcription real-time PCR (RT-rtPCR). Fresh-frozen and formalin-fixed tissues were collected from virus-infected, control, and sham-infected Atlantic salmon (Salmo salar). Microscopic differences were not evident between uninfected and infected fish. Viral cytopathic effect was observed in cell cultures inoculated with fresh-frozen tissue homogenates from 3 of 3 ISAV-infected and 0 of 4 uninfected or sham-infected fish. The ISAV genome was detected by shotgun metagenomics in RNA extracted from the medium from 3 of 3 inoculated cell cultures, 3 of 3 infected fish, and 0 of 4 uninfected or sham-infected fish, yielding sufficient coverage for de novo assembly. An ISH probe against ISAV revealed ISAV genome in multiple organs, with abundance in renal hematopoietic tissue. Virus was detected by RT-rtPCR in gill, heart, kidney, liver, and spleen. EM and metagenomic WGS from tissues were challenging and unsuccessful. Our proof-of-concept methodology has promise for detection and characterization of unknown aquatic pathogens and also highlights some associated methodology challenges that require additional investigation.

6.
Comput Biol Med ; 153: 106528, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634600

RESUMEN

BACKGROUND: Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions. There are few computationally tractable methods for propagating uncertainties from images to clinical predictions. METHOD: We describe the left atrium anatomy using our Bayesian shape model that captures anatomical uncertainty in medical images and has been validated on 63 independent clinical images. This algorithm describes the left atrium anatomy using Nmodes=15 principal components, capturing 95% of the shape variance and calculated from 70 clinical cardiac magnetic resonance (CMR) images. Latent variables encode shape uncertainty: we evaluate their posterior distribution for each new anatomy. We assume a normally distributed prior. We use the unscented transform to sample from the posterior shape distribution. For each sample, we assign the local material properties of the tissue using the projection of late gadolinium enhancement CMR (LGE-CMR) onto the anatomy to estimate local fibrosis. To test which activation patterns an atrium can sustain, we perform an arrhythmia simulation for each sample. We consider 34 possible outcomes (31 macro-re-entries, functional re-entry, atrial fibrillation, and non-sustained arrhythmia). For each sample, we determine the outcome by comparing pre- and post-ablation activation patterns following a cross-field stimulus. RESULTS: We create patient-specific atrial electrophysiology models of ten patients. We validate the mean and standard deviation maps from the unscented transform with the same statistics obtained with 12,000 Monte Carlo (ground truth) samples. We found discrepancies <3% and <2% for the mean and standard deviation for fibrosis burden and activation time, respectively. For each patient case, we then compare the predicted outcome from a model built on the clinical data (deterministic approach) with the probability distribution obtained from the simulated samples. We found that the deterministic approach did not predict the most likely outcome in 80% of the cases. Finally, we estimate the influence of each source of uncertainty independently. Fixing the anatomy to the posterior mean and maintaining uncertainty in fibrosis reduced the prediction of self-terminating arrhythmias from ≃14% to ≃7%. Keeping the fibrosis fixed to the sample mean while retaining uncertainty in shape decreased the prediction of substrate-driven arrhythmias from ≃33% to ≃18% and increased the prediction of macro-re-entries from ≃54% to ≃68%. CONCLUSIONS: We presented a novel method for propagating shape uncertainty in atrial models through to uncertainty in numerical simulations. The algorithm takes advantage of the unscented transform to compute the output distribution of the outcomes. We validated the unscented transform as a viable sampling strategy to deal with anatomy uncertainty. We then showed that the prediction computed with a deterministic model does not always coincide with the most likely outcome. Finally, we found that shape uncertainty affects the predictions of macro-re-entries, while fibrosis uncertainty affects the predictions of functional re-entries.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Medios de Contraste , Incertidumbre , Teorema de Bayes , Gadolinio , Atrios Cardíacos , Imagen por Resonancia Magnética/métodos , Fibrosis
7.
Cancers (Basel) ; 15(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672287

RESUMEN

Ovarian cancer survival in the UK lags behind comparable countries. Results from the ongoing National Ovarian Cancer Audit feasibility pilot (OCAFP) show that approximately 1 in 4 women with advanced ovarian cancer (Stage 2, 3, 4 and unstaged cancer) do not receive any anticancer treatment and only 51% in England receive international standard of care treatment, i.e., the combination of surgery and chemotherapy. The audit has also demonstrated wide variation in the percentage of women receiving anticancer treatment for advanced ovarian cancer, be it surgery or chemotherapy across the 19 geographical regions for organisation of cancer delivery (Cancer Alliances). Receipt of treatment also correlates with survival: 5 year Cancer survival varies from 28.6% to 49.6% across England. Here, we take a systems wide approach encompassing both diagnostic pathways and cancer treatment, derived from the whole cohort of women with ovarian cancer to set out recommendations and quality performance indicators (QPI). A multidisciplinary panel established by the British Gynaecological Cancer Society carefully identified QPI against criteria: metrics selected were those easily evaluable nationally using routinely available data and where there was a clear evidence base to support interventions. These QPI will be valuable to other taxpayer funded systems with national data collection mechanisms and are to our knowledge the only population level data derived standards in ovarian cancer. We also identify interventions for Best practice and Research recommendations.

8.
Comput Med Imaging Graph ; 103: 102152, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525769

RESUMEN

Patients with myocardial infarction are at elevated risk of sudden cardiac death, and scar tissue arising from infarction is known to play a role. The accurate identification of scars therefore is crucial for risk assessment, quantification and guiding interventions. Typically, core scars and grey peripheral zones are identified by radiologists and clinicians based on cardiac late gadolinium enhancement magnetic resonance images (LGE-MRI). Scar regions from LGE-MRI vary in size, shape, heterogeneity, artifacts, and image resolution. Thus, manual segmentation is time consuming, and influenced by the observer's experience (bias effect). We propose a fully automatic framework that develops 3D anatomical models of the left ventricle with border zone and core scar regions that are free from bias effect. Our myocardium (SOCRATIS), border scar and core scar (BZ-SOCRATIS) segmentation pipelines were evaluated using internal and external validation datasets. The automatic myocardium segmentation framework performed a Dice score of 81.9% and 70.0% in the internal and external validation dataset. The automatic scar segmentation pipeline achieved a Dice score of 60.9% for the core scar segmentation and 43.7% for the border zone scar segmentation in the internal dataset and in the external dataset a Dice score of 44.2% for the core scar segmentation and 54.8% for the border scar segmentation respectively. To the best of our knowledge, this is the first study outlining a fully automatic framework to develop 3D anatomical models of the left ventricle with border zone and core scar regions. Our method exhibits high performance without the need for training or tuning in an unseen cohort (unsupervised).


Asunto(s)
Ventrículos Cardíacos , Infarto del Miocardio , Humanos , Ventrículos Cardíacos/diagnóstico por imagen , Cicatriz/diagnóstico por imagen , Cicatriz/patología , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética/métodos
9.
Sci Rep ; 12(1): 16572, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195766

RESUMEN

Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a patient during a standard clinical procedure. In this work, we propose a novel framework for the probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local measurements of cardiac excitability. Parameter fields are represented as Gaussian processes on manifolds and are linked to measurements via surrogate functions that map from local parameter values to measurements. The posterior distribution of parameter fields is then obtained. We show that our method can recover parameter fields used to generate localised synthetic measurements of effective refractory period. Our methodology is applicable to other measurement types collected with clinical protocols, and more generally for calibration where model parameters vary over a manifold.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos , Calibración , Electrofisiología Cardíaca , Humanos , Distribución Normal
10.
Front Physiol ; 13: 920788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148313

RESUMEN

Background and Objective: Renewal theory is a statistical approach to model the formation and destruction of phase singularities (PS), which occur at the pivots of spiral waves. A common issue arising during observation of renewal processes is an inspection paradox, due to oversampling of longer events. The objective of this study was to characterise the effect of a potential inspection paradox on the perception of PS lifetimes in cardiac fibrillation. Methods: A multisystem, multi-modality study was performed, examining computational simulations (Aliev-Panfilov (APV) model, Courtmanche-Nattel model), experimentally acquired optical mapping Atrial and Ventricular Fibrillation (AF/VF) data, and clinically acquired human AF and VF. Distributions of all PS lifetimes across full epochs of AF, VF, or computational simulations, were compared with distributions formed from lifetimes of PS existing at 10,000 simulated commencement timepoints. Results: In all systems, an inspection paradox led towards oversampling of PS with longer lifetimes. In APV computational simulations there was a mean PS lifetime shift of +84.9% (95% CI, ± 0.3%) (p < 0.001 for observed vs overall), in Courtmanche-Nattel simulations of AF +692.9% (95% CI, ±57.7%) (p < 0.001), in optically mapped rat AF +374.6% (95% CI, ± 88.5%) (p = 0.052), in human AF mapped with basket catheters +129.2% (95% CI, ±4.1%) (p < 0.05), human AF-HD grid catheters 150.8% (95% CI, ± 9.0%) (p < 0.001), in optically mapped rat VF +171.3% (95% CI, ±15.6%) (p < 0.001), in human epicardial VF 153.5% (95% CI, ±15.7%) (p < 0.001). Conclusion: Visual inspection of phase movies has the potential to systematically oversample longer lasting PS, due to an inspection paradox. An inspection paradox is minimised by consideration of the overall distribution of PS lifetimes.

11.
Front Endocrinol (Lausanne) ; 13: 953995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966104

RESUMEN

The median eminence (ME) is part of the neuroendocrine system (NES) that functions as a crucial interface between the hypothalamus and pituitary gland. The ME contains many non-neuronal cell types, including oligodendrocytes, oligodendrocyte precursor cells (OPCs), tanycytes, astrocytes, pericytes, microglia and other immune cells, which may be involved in the regulation of NES function. For example, in mice, ablation of tanycytes (a special class of ependymal glia with stem cell-like functions) results in weight gain, feeding, insulin insensitivity and increased visceral adipose, consistent with the demonstrated ability of these cells to sense and transport both glucose and leptin, and to differentiate into neurons that control feeding and metabolism in the hypothalamus. To give a further example, OPCs in the ME of mice have been shown to rapidly respond to dietary signals, in turn controlling composition of the extracellular matrix in the ME, derived from oligodendrocyte-lineage cells, which may contribute to the previously described role of these cells in actively maintaining leptin-receptor-expressing dendrites in the ME. In this review, we explore and discuss recent advances such as these, that have developed our understanding of how the various cell types of the ME contribute to its function in the NES as the interface between the hypothalamus and pituitary gland. We also highlight avenues of future research which promise to uncover additional functions of the ME and the glia, stem and progenitor cells it contains.


Asunto(s)
Leptina , Eminencia Media , Animales , Células Ependimogliales/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Eminencia Media/metabolismo , Ratones , Neuroglía/fisiología
13.
J Arrhythm ; 38(1): 77-85, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35222753

RESUMEN

BACKGROUND: Despite studies using localized high density contact mapping and lower resolution panoramic approaches, the mechanisms that sustain human persistent atrial fibrillation (AF) remain unresolved. Voltage mapping is commonly employed as a surrogate of atrial substrate to guide ablation procedures. OBJECTIVE: To study the distribution and temporal stability of activation during persistent AF using a global non-contact charge density approach and compare the findings with bipolar contact mapping. METHODS: Patients undergoing either redo or de novo ablation for persistent AF underwent charge density and voltage mapping to guide the ablation procedure. Offline analysis was performed to measure the temporal stability of three specific charge density activation (CDA) patterns, and the degree of spatial overlap between CDA patterns and low voltage regions. RESULTS: CDA was observed in patient-specific locations that partially overlapped, comprising local rotational activity (18% of LA), local irregular activity (41% of LA), and focal activity (39% of LA). Local irregular activity had the highest temporal stability. LA voltage was similar in regions with and without CDA. CONCLUSION: In persistent AF, CDA patterns appear unrelated to low voltage areas but occur in varying locations with high temporal stability.

14.
J Med Genet ; 59(2): 133-140, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568438

RESUMEN

BACKGROUND: Women testing positive for BRCA1/2 pathogenic variants have high lifetime risks of breast cancer (BC) and ovarian cancer. The effectiveness of risk reducing surgery (RRS) has been demonstrated in numerous previous studies. We evaluated long-term uptake, timing and effectiveness of risk reducing mastectomy (RRM) and bilateral salpingo-oophorectomy (RRSO) in healthy BRCA1/2 carriers. METHODS: Women were prospectively followed up from positive genetic test (GT) result to censor date. χ² testing compared categorical variables; Cox regression model estimated HRs and 95% CI for BC/ovarian cancer cases associated with RRS, and impact on all-cause mortality; Kaplan-Meier curves estimated cumulative RRS uptake. The annual cancer incidence was estimated by women-years at risk. RESULTS: In total, 887 women were included in this analysis. Mean follow-up was 6.26 years (range=0.01-24.3; total=4685.4 women-years). RRS was performed in 512 women, 73 before GT. Overall RRM uptake was 57.9% and RRSO uptake was 78.6%. The median time from GT to RRM was 18.4 months, and from GT to RRSO-10.0 months. Annual BC incidence in the study population was 1.28%. Relative BC risk reduction (RRM versus non-RRM) was 94%. Risk reduction of ovarian cancer (RRSO versus non-RRSO) was 100%. CONCLUSION: Over a 24-year period, we observed an increasing number of women opting for RRS. We showed that the timing of RRS remains suboptimal, especially in women undergoing RRSO. Both RRM and RRSO showed a significant effect on relevant cancer risk reduction. However, there was no statistically significant RRSO protective effect on BC.


Asunto(s)
Neoplasias de la Mama/prevención & control , Genes BRCA1 , Genes BRCA2 , Neoplasias Ováricas/prevención & control , Procedimientos Quirúrgicos Profilácticos , Salpingooforectomía , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/genética , Femenino , Estudios de Seguimiento , Heterocigoto , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Mastectomía Profiláctica , Estudios Prospectivos , Medición de Riesgo , Adulto Joven
15.
Heart Rhythm ; 19(2): 295-305, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34662707

RESUMEN

BACKGROUND: Ventricular fibrillation (VF) is characterized by multiple wavelets and rotors. No equation to predict the number of rotors and wavelets observed during fibrillation has been validated in human VF. OBJECTIVE: The purpose of this study was to test the hypothesis that a single equation derived from a Markov M/M/∞ birth-death process could predict the number of rotors and wavelets occurring in human clinical VF. METHODS: Epicardial induced VF (256-electrode) recordings obtained from patients undergoing cardiac surgery were studied (12 patients; 62 epochs). Rate constants for phase singularity (PS) (which occur at the pivot points of rotors) and wavefront (WF) formation and destruction were derived by fitting distributions to PS and WF interformation and lifetimes. These rate constants were combined in an M/M/∞ governing equation to predict the number of PS and WF in VF episodes. Observed distributions were compared to those predicted by the M/M/∞ equation. RESULTS: The M/M/∞ equation accurately predicted average PS and WF number and population distribution, demonstrated in all epochs. Self-terminating episodes of VF were distinguished from VF episodes requiring termination by a trend toward slower PS destruction, slower rates of PS formation, and a slower mixing rate of the VF process, indicated by larger values of the second largest eigenvalue modulus of the M/M/∞ birth-death matrix. The longest-lasting PS (associated with rotors) had shorter interactivation time intervals compared to shorter-lasting PS lasting <150 ms (∼1 PS rotation in human VF). CONCLUSION: The M/M/∞ equation explains the number of wavelets and rotors observed, supporting a paradigm of VF based on statistical fibrillatory dynamics.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Fibrilación Ventricular/fisiopatología , Procedimientos Quirúrgicos Cardíacos , Mapeo Epicárdico , Femenino , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Masculino , Cadenas de Markov , Modelos Cardiovasculares
16.
J R Soc Interface ; 18(184): 20210612, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34814734

RESUMEN

Low blood glucose, hypoglycaemia, has been implicated as a possible contributing factor to sudden cardiac death (SCD) in people with diabetes but it is challenging to investigate in clinical studies. We hypothesized the effects of hypoglycaemia on the sinoatrial node (SAN) in the heart to be a candidate mechanism and adapted a computational model of the human SAN action potential developed by Fabbri et al., to investigate the effects of hypoglycaemia on the pacemaker rate. Using Latin hypercube sampling, we combined the effects of low glucose (LG) on the human ether-a-go-go-related gene channel with reduced blood potassium, hypokalaemia, and added sympathetic and parasympathetic stimulus. We showed that hypoglycaemia on its own causes a small decrease in heart rate but there was also a marked decrease in heart rate when combined with hypokalaemia. The effect of the sympathetic stimulus was diminished, causing a smaller increase in heart rate, with LG and hypokalaemia compared to normoglycaemia. By contrast, the effect of the parasympathetic stimulus was enhanced, causing a greater decrease in heart rate. We therefore demonstrate a potential mechanistic explanation for hypoglycaemia-induced bradycardia and show that sinus arrest is a plausible mechanism for SCD in people with diabetes.


Asunto(s)
Hipoglucemia , Hipopotasemia , Potenciales de Acción , Bradicardia , Frecuencia Cardíaca , Humanos , Nodo Sinoatrial
17.
Comput Med Imaging Graph ; 94: 102008, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34763146

RESUMEN

The global pandemic of coronavirus disease 2019 (COVID-19) is continuing to have a significant effect on the well-being of the global population, thus increasing the demand for rapid testing, diagnosis, and treatment. As COVID-19 can cause severe pneumonia, early diagnosis is essential for correct treatment, as well as to reduce the stress on the healthcare system. Along with COVID-19, other etiologies of pneumonia and Tuberculosis (TB) constitute additional challenges to the medical system. Pneumonia (viral as well as bacterial) kills about 2 million infants every year and is consistently estimated as one of the most important factor of childhood mortality (according to the World Health Organization). Chest X-ray (CXR) and computed tomography (CT) scans are the primary imaging modalities for diagnosing respiratory diseases. Although CT scans are the gold standard, they are more expensive, time consuming, and are associated with a small but significant dose of radiation. Hence, CXR have become more widespread as a first line investigation. In this regard, the objective of this work is to develop a new deep transfer learning pipeline, named DenResCov-19, to diagnose patients with COVID-19, pneumonia, TB or healthy based on CXR images. The pipeline consists of the existing DenseNet-121 and the ResNet-50 networks. Since the DenseNet and ResNet have orthogonal performances in some instances, in the proposed model we have created an extra layer with convolutional neural network (CNN) blocks to join these two models together to establish superior performance as compared to the two individual networks. This strategy can be applied universally in cases where two competing networks are observed. We have tested the performance of our proposed network on two-class (pneumonia and healthy), three-class (COVID-19 positive, healthy, and pneumonia), as well as four-class (COVID-19 positive, healthy, TB, and pneumonia) classification problems. We have validated that our proposed network has been able to successfully classify these lung-diseases on our four datasets and this is one of our novel findings. In particular, the AUC-ROC are 99.60, 96.51, 93.70, 96.40% and the F1 values are 98.21, 87.29, 76.09, 83.17% on our Dataset X-Ray 1, 2, 3, and 4 (DXR1, DXR2, DXR3, DXR4), respectively.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Neumonía , Tuberculosis , Algoritmos , Humanos , Neumonía/diagnóstico por imagen , SARS-CoV-2 , Rayos X
18.
Front Physiol ; 12: 765622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671278

RESUMEN

[This corrects the article DOI: 10.3389/fphys.2021.693015.].

19.
Front Physiol ; 12: 707189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646149

RESUMEN

Electrical activation during atrial fibrillation (AF) appears chaotic and disorganised, which impedes characterisation of the underlying substrate and treatment planning. While globally chaotic, there may be local preferential activation pathways that represent potential ablation targets. This study aimed to identify preferential activation pathways during AF and predict the acute ablation response when these are targeted by pulmonary vein isolation (PVI). In patients with persistent AF (n = 14), simultaneous biatrial contact mapping with basket catheters was performed pre-ablation and following each ablation strategy (PVI, roof, and mitral lines). Unipolar wavefront activation directions were averaged over 10 s to identify preferential activation pathways. Clinical cases were classified as responders or non-responders to PVI during the procedure. Clinical data were augmented with a virtual cohort of 100 models. In AF pre-ablation, pathways originated from the pulmonary vein (PV) antra in PVI responders (7/7) but not in PVI non-responders (6/6). We proposed a novel index that measured activation waves from the PV antra into the atrial body. This index was significantly higher in PVI responders than non-responders (clinical: 16.3 vs. 3.7%, p = 0.04; simulated: 21.1 vs. 14.1%, p = 0.02). Overall, this novel technique and proof of concept study demonstrated that preferential activation pathways exist during AF. Targeting patient-specific activation pathways that flowed from the PV antra to the left atrial body using PVI resulted in AF termination during the procedure. These PV activation flow pathways may correspond to the presence of drivers in the PV regions.

20.
Comput Med Imaging Graph ; 93: 101982, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481237

RESUMEN

Multi-atlas segmentation of cardiac regions and total infarct scar (MA-SOCRATIS) is an unsupervised automatic pipeline to segment left ventricular myocardium and scar from late gadolinium enhanced MR images (LGE-MRI) of the heart. We implement two different pipelines for myocardial and scar segmentation from short axis LGE-MRI. Myocardial segmentation has two steps; initial segmentation and re-estimation. The initial segmentation step makes a first estimate of myocardium boundaries by using multi-atlas segmentation techniques. The re-estimation step refines the myocardial segmentation by a combination of k-means clustering and a geometric median shape variation technique. An active contour technique determines the unhealthy and healthy myocardial wall. The scar segmentation pipeline is a combination of a Rician-Gaussian mixture model and full width at half maximum (FWHM) thresholding, to determine the intensity pixels in scar regions. Following this step a watershed method with an automatic seed-points framework segments the final scar region. MA-SOCRATIS was evaluated using two different datasets. In both datasets ground truths were based on manual segmentation of short axis images from LGE-MRI scans. The first dataset included 40 patients from the MS-CMRSeg 2019 challenge dataset (STACOM at MICCAI 2019). The second is a collection of 20 patients with scar regions that are challenging to segment. MA-SOCRATIS achieved robust and accurate performance in automatic segmentation of myocardium and scar regions without the need of training or tuning in both cohorts, compared with state-of-the-art techniques (intra-observer and inter observer myocardium segmentation: 81.9% and 70% average Dice value, and scar (intra-observer and inter observer segmentation: 70.5% and 70.5% average Dice value).


Asunto(s)
Ventrículos Cardíacos , Infarto del Miocardio , Cicatriz/diagnóstico por imagen , Cicatriz/patología , Gadolinio , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...