Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mar Biol ; 88: 39-89, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34119046

RESUMEN

Skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna are the target species of tropical tuna fisheries in the Indian Ocean, with high commercial value in the international market. High fishing pressure over the past three decades has raised concerns about their sustainability. Understanding life history strategies and stock structure is essential to determine species resilience and how they might respond to exploitation. Here we provide a comprehensive review of available knowledge on the biology, ecology, and stock structure of tropical tuna species in the Indian Ocean. We describe the characteristics of Indian Ocean tropical tuna fisheries and synthesize skipjack, yellowfin, and bigeye tuna key life history attributes such as biogeography, trophic ecology, growth, and reproductive biology. In addition, we evaluate the available literature about their stock structure using different approaches such as analysis of fisheries data, genetic markers, otolith microchemistry and tagging, among others. Based on this review, we conclude that there is a clear lack of ocean basin-scale studies on skipjack, yellowfin and bigeye tuna life history, and that regional stock structure studies indicate that the panmictic population assumption of these stocks should be investigated further. Finally, we identify specific knowledge gaps that should be addressed with priority to ensure a sustainable and effective management of these species.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Atún , Animales , Peces , Océano Índico
2.
PLoS One ; 16(3): e0249327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780495

RESUMEN

The chemical composition of otoliths (earbones) can provide valuable information about stock structure and connectivity patterns among marine fish. For that, chemical signatures must be sufficiently distinct to allow accurate classification of an unknown fish to their area of origin. Here we have examined the suitability of otolith microchemistry as a tool to better understand the spatial dynamics of skipjack tuna (Katsuwonus pelamis), a highly valuable commercial species for which uncertainties remain regarding its stock structure in the Indian Ocean. For this aim, we have compared the early life otolith chemical composition of young-of-the-year (<6 months) skipjack tuna captured from the three main nursery areas of the equatorial Indian Ocean (West, Central and East). Elemental (Li:Ca, Sr:Ca, Ba:Ca, Mg:Ca and Mn:Ca) and stable isotopic (δ13C, δ18O) signatures were used, from individuals captured in 2018 and 2019. Otolith Sr:Ca, Ba:Ca, Mg:Ca and δ18O significantly differed among fish from different nurseries, but, in general, the chemical signatures of the three nursery areas largely overlapped. Multivariate analyses of otolith chemical signatures revealed low geographic separation among Central and Eastern nurseries, achieving a maximum overall random forest cross validated classification success of 51%. Cohort effect on otolith trace element signatures was also detected, indicating that variations in chemical signatures associated with seasonal changes in oceanographic conditions must be well understood, particularly for species with several reproductive peaks throughout the year. Otolith microchemistry in conjunction with other techniques (e.g., genetics, particle tracking) should be further investigated to resolve skipjack stock structure, which will ultimately contribute to the sustainable management of this stock in the Indian Ocean.


Asunto(s)
Membrana Otolítica/química , Atún , Animales , Océano Índico , Oligoelementos/análisis
3.
Dalton Trans ; 39(15): 3644-52, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20354617

RESUMEN

A series of substituted 1,4,7,10-tetraazacylcododecane ligands 1-4, possessing sensitizing nitrobenzene or naphthalene antennae, as one of the amide pendant arms, and their complexes with europium(III) were synthesised. The protonation constants and the metal ion stability constants of two of these ligands were determined by potentiometric titration. The pK(a) of the water molecules coordinated to the complexed metal ion were determined by both luminescent and potentiometric measurements. The luminescence pH dependence of a further three Eu(III) complexes, 5-7, which lack any antennae, were also studied with the aim of gaining a better understanding of the role of the metal bound water molecules in the luminescence properties of such complexes upon direct excitation of the lanthanide ion. The results from these luminescent measurements demonstrate that the Eu(III) emission was significantly modulated as a function of pH for all the complexes, which we assigned to changes occurring in the coordination environment of the ion within the cyclen system, caused by deprotonation of metal bound water molecules and/or deprotonation of pendent amide arms.


Asunto(s)
Amidas/química , Complejos de Coordinación/química , Europio/química , Compuestos Heterocíclicos/química , Agua/química , Complejos de Coordinación/síntesis química , Ciclamas , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...