Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 2013: bat011, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23589541

RESUMEN

Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.


Asunto(s)
Genoma/genética , Gorilla gorilla/genética , Gorilla gorilla/inmunología , Complejo Mayor de Histocompatibilidad/genética , Análisis de Secuencia de ADN , Animales , Secuencia de Bases , Mapeo Cromosómico , Humanos , Familia de Multigenes/genética , Pan troglodytes/genética
2.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398555

RESUMEN

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Asunto(s)
Evolución Molecular , Especiación Genética , Genoma/genética , Gorilla gorilla/genética , Animales , Femenino , Regulación de la Expresión Génica , Variación Genética/genética , Genómica , Humanos , Macaca mulatta/genética , Datos de Secuencia Molecular , Pan troglodytes/genética , Filogenia , Pongo/genética , Proteínas/genética , Alineación de Secuencia , Especificidad de la Especie , Transcripción Genética
3.
Nature ; 464(7289): 713-20, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20360734

RESUMEN

Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Enfermedad , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Artritis Reumatoide/genética , Estudios de Casos y Controles , Enfermedad de Crohn/genética , Diabetes Mellitus/genética , Frecuencia de los Genes/genética , Humanos , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Proyectos Piloto , Polimorfismo de Nucleótido Simple/genética , Control de Calidad
4.
PLoS Biol ; 6(1): e22, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18232738

RESUMEN

CpG islands (CGIs) are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.


Asunto(s)
Islas de CpG/fisiología , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , Mapeo Cromosómico , Femenino , Biblioteca de Genes , Genoma Humano , Humanos , Masculino , Especificidad de Órganos , Distribución Tisular
5.
PLoS Biol ; 1(2): E45, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14624247

RESUMEN

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis/genética , Genoma , Genómica/métodos , Animales , Evolución Biológica , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Análisis por Conglomerados , Codón , Secuencia Conservada , Evolución Molecular , Exones , Biblioteca de Genes , Secuencias Repetitivas Esparcidas , Intrones , MicroARNs/genética , Modelos Genéticos , Modelos Estadísticos , Datos de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Mapeo Físico de Cromosoma , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Proteínas/química , ARN/química , ARN Ribosómico/genética , ARN Lider Empalmado , ARN de Transferencia/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA