Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutr Bull ; 43(2): 189-194, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29861662

RESUMEN

This article presents a summary of recent results relating to phytosterol oleogels. Oleogels represent a novel way of replacing saturated fat in food, whilst phytosterols have been shown to actively lower low-density lipoprotein (LDL)- cholesterol levels. There are a number of technical challenges to exploiting phytosterol oleogels, including a high sensitivity to water. To facilitate their incorporation into food, the fundamental physiochemical processes which mediate the formation of these gels and two different approaches to produce phytosterol oleogels that are stable in the presence of water were explored as part of the recent Biotechnology and Biological Sciences Research Council (BBSRC)-Diet and Health Research Industry Club (DRINC)-funded Edible Oleogels for Reduction of Saturated Fat project. This report summarises the findings, which will support the development of healthier food products that are lower in saturated fat and acceptable to consumers.

2.
Phys Rev Lett ; 119(1): 018001, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28731771

RESUMEN

We study the response of a film of colloidal spherocylinders to compression by combining pressure-area isotherm measurements, microscopy, and computer simulations. We find that the behavior of the film depends strongly on the geometry of the particles. For a small aspect ratio, a uniform monolayer forms and then buckles. For a higher aspect ratio, particles flip to orient perpendicular to the interface; we show that flipping occurs in locations where the nematic ordering is low. Our experiments and simulations further demonstrate that the longest particles rearrange to self-assemble a colloidal bilayer, which is stable due to the unique geometry of spherocylinders at an interface.

4.
Phys Rev Lett ; 110(18): 187801, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23683244

RESUMEN

We simulate colloids (radius R ~ 1 µm) trapped at the interface between a cholesteric liquid crystal and an immiscible oil at which the helical order (pitch p) in the bulk conflicts with the orientation induced at the interface, stabilizing an ordered array of disclinations. For a weak anchoring strength W of the director field at the colloidal surface, this creates a template, favoring particle positions either on top of or midway between defect lines, depending on α=R/p. For small α, optical microscopy experiments confirm this picture, but for larger α no templating is seen. This may stem from the emergence at moderate W of a rugged energy landscape associated with defect reconnections.


Asunto(s)
Colesterol/química , Coloides/química , Aceites/química , Simulación por Computador , Propiedades de Superficie , Termodinámica , Triazinas/química
5.
Phys Rev Lett ; 108(26): 268306, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-23005023

RESUMEN

We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.


Asunto(s)
Emulsiones/química , Gravitación , Modelos Teóricos , Alcanos/química , Dodecil Sulfato de Sodio/química , Tensión Superficial , Tensoactivos/química
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 011405, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19257033

RESUMEN

We use x-ray photon correlation spectroscopy to investigate the dynamics of a high-volume-fraction emulsion creaming under gravity. The dodecane-in-water emulsion has interfaces stabilized solely by colloidal particles (silica). The samples were observed soon after mixing: as the emulsion becomes compact we discern two regimes of aging with a crossover between them. The young emulsion has faster dynamics associated with creaming in a crowded environment accompanied by local rearrangements. The dynamics slow down for the older emulsion, although our studies show that motion is associated with large intermittent events. The relaxation rate, as seen from the intensity autocorrelation function, depends linearly on the wave vector at all times; however, the exponent associated with the line shape changes from 1.5 for young samples to less than 1 as the emulsion ages. The combination of ballisticlike dynamics, an exponent that drops below 1, and large intermittent fluctuations has not been reported before to our knowledge.

7.
J Phys Condens Matter ; 20(11): 113101, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-21694193

RESUMEN

Carefully tuned composite materials can have properties wholly unlike those of their separate constituents. We review the development of one example: colloid-stabilized emulsions with bicontinuous liquid domains. These non-equilibrium structures resemble the sponge mesophase of surfactants; however, in the colloid-stabilized case the interface separating the liquid domains is itself semi-solid. The arrangement of domains is created by arresting liquid-liquid phase separation via spinodal decomposition. Dispersed colloids exhibiting partial wettability become trapped on the newly created interface and jam together as the domains coarsen. Similar structures have been created in polymer blends stabilized using either interfacial nanoparticles or clay platelets. Here it has been possible to create the domain arrangement either by phase separation or by direct mixing of the melt. The low molecular weight liquid and polymer based structures have been developed independently and much can be learnt by comparing the two.

8.
Nat Mater ; 6(12): 966-71, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17982465

RESUMEN

Recent large-scale computer simulations suggest that it may be possible to create a new class of soft solids, called 'bijels', by stabilizing and arresting the bicontinuous interface in a binary liquid demixing via spinodal decomposition using particles that are neutrally wetted by both liquids. The interfacial layer of particles is expected to be semi-permeable; hence, if realized, these new materials would have many potential applications, for example, as micro-reaction media. However, the creation of bijels in the laboratory faces serious obstacles. In general, fast quench rates are necessary to bypass nucleation, so that only samples with limited thickness can be produced, which destroys the three-dimensionality of the putative bicontinuous network. Moreover, even a small degree of unequal wettability of the particles by the two liquids can lead to ill-characterized, 'lumpy' interfacial layers and therefore irreproducible material properties. Here, we report a reproducible protocol for creating three-dimensional samples of bijel in which the interfaces are stabilized by essentially a single layer of particles. We demonstrate how to tune the mean interfacial separation in these bijels, and show that mechanically, they indeed behave as soft solids. These characteristics and their tunability will be of great value for microfluidic applications.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(5 Pt 1): 051716, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16383629

RESUMEN

A high-resolution calorimetric study has been carried out on nanocolloidal dispersions of aerosils in the liquid crystal 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8S5) as a function of aerosil concentration and temperature spanning the smectic-C to nematic phases. Over this temperature range, this liquid crystal possesses two continuous XY phase transitions: a fluctuation-dominated nematic to smectic-A transition with alpha approximately alphaXY=-0.013 and a mean-field smectic-A to smectic-C transition. The effective critical character of the N-SmA transition remains unchanged over the entire range of the introduced quenched random disorder while the peak height and enthalpy can be well described by considering a cutoff length scale to the quasicritical fluctuations. The robust nature of the N-SmA transition in this system contrasts with cyanobiphenyl-aerosil systems and may be due to the mesogens being nonpolar and having a long nematic range. The character of the SmA-SmC transition changes gradually with increasing disorder but remains mean field like. The heat capacity maximum at the SmA-SmC transition scales as rho with an apparent evolution from tricritical to a simple mean-field step behavior. These results may be generally understood as a stiffening of the liquid crystal (both the nematic elasticity as well as the smectic layer compression modulus B) with silica density.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 1): 061706, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15244597

RESUMEN

The short-range order which remains when the isotropic to smectic- A transition is perturbed by a gel of silica nanoparticles (aerosils) has been studied using high-resolution synchrotron x-ray diffraction. The gels have been created in situ in decylcyanobiphenyl, which has a strongly first-order isotropic to smectic- A transition. The effects are determined by detailed analysis of the temperature and gel density dependence of the smectic structure factor. In previous studies of the continuous nematic to smectic- A transition in a variety of thermotropic liquid crystals the aerosil gel appeared to pin, at random, the phase of the smectic density modulation. For the isotropic to smectic- A transition the same gel perturbation yields different results. The smectic correlation length decreases more slowly with increasing random-field variance in good quantitative agreement with the effect of a random pinning field at a transition from a uniform phase directly to a phase with one-dimensional translational order. We thus compare the influence of random fields on a freezing transition with and without an intervening orientationally ordered phase.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(3 Pt 1): 031703, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15089306

RESUMEN

High-resolution ac calorimetry has been carried out on dispersions of aerosils in the liquid crystal octyloxycyanobiphenyl (8OCB) as a function of aerosil concentration and temperature spanning the crystal to isotropic phases. The liquid crystal 8OCB is elastically stiffer than the previously well studied octylcyanobiphenyl (8CB)+aerosil system and so general quenched random-disorder effects and liquid crystal specific effects can be distinguished. A double heat capacity feature is observed at the isotropic to nematic phase transition with an aerosil independent overlap of the heat capacity wings far from the transition and having a nonmonotonic variation of the transition temperature. A crossover between low and high aerosil density behavior is observed for 8OCB+aerosil. These features are generally consistent with those on the 8CB+aerosil system. Differences between these two systems in the magnitude of the transition temperature shifts, heat capacity suppression, and crossover aerosil density between the two regimes of behavior indicate a liquid crystal specific effect. The low aerosil density regime is apparently more orientationally disordered than the high aerosil density regime, which is more translationally disordered. An interpretation of these results based on a temperature dependent disorder strength is discussed. Finally, a detailed thermal hysteresis study has found that crystallization of a well homogenized sample perturbs and increases the disorder for low aerosil density samples but does not influence high-density samples.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(3 Pt 1): 031706, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14524787

RESUMEN

The effects of dispersed aerosil nanoparticles on two of the phase transitions of the thermotropic liquid-crystal material 4-n-pentylphenylthiol-4(')-n-octyloxybenzoate (8;S5) have been studied using high-resolution x-ray diffraction techniques. The aerosils hydrogen bond together to form a gel which imposes a weak quenched disorder on the liquid crystal. The smectic-A fluctuations are well characterized by a two-component line shape representing thermal and random-field contributions. An elaboration on this line shape is required to describe the fluctuations in the smectic-C phase; specifically the effect of the tilt on the wave-vector dependence of the thermal fluctuations must be explicitly taken into account. Both the magnitude and the temperature dependence of the smectic-C tilt order parameter are observed to be unaffected by the disorder. This may be a consequence of the large bare smectic correlation length in the direction of modulation for this transition. These results show that the understanding developed for the nematic to smectic-A transition for octylcyanobiphenyl and octyloxycyanobiphenyl liquid crystals with quenched disorder can be extended to quite different materials and transitions.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(2 Pt 1): 021703, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12636696

RESUMEN

High-resolution x-ray diffraction and ac-calorimetric experiments have been carried out on the liquid-crystal octyloxycyanobiphenyl in which aerosil particles are dispersed. The measurements were made over a temperature range around the bulk nematic to smectic-A transition temperature. At this transition the liquid crystal breaks translational symmetry in a single direction. The silica particles, which hydrogen bond together to form a very low density gel, provide the quenched disorder. The random gel leads to observable broadening of the x-ray reflection from the smectic layers. The structure factor is well described by modeling the effect of the aerosils as a quenched random field. Dispersed aerosils are thought to pin both the direction of the translational ordering and the position of the layers. The latter appears to have the greatest effect on the x-ray line shape. We show that the aerosil surface area, as verified by small-angle scattering, equates to the variance of the random field. Calorimetric results reveal substantial change in the specific heat peak associated with the nematic to smectic-A transition. As the concentration of aerosil increases, the specific heat peak remains sharp yet decreases in magnitude and shifts in temperature in a nonmonotonic fashion. In this regime, the critical exponent alpha becomes progressively smaller. For the samples with the largest concentrations of aerosil particles the C(p)(N-A) peak becomes highly smeared and shifts smoothly to lower temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...