Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 5: e1337, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25032860

RESUMEN

The control of glucose metabolism and the cell cycle must be coordinated in order to guarantee sufficient ATP and anabolic substrates at distinct phases of the cell cycle. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are well established regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent allosteric activator of 6-phosphofructo-1-kinase (Pfk-1). PFKFB3 is overexpressed in human cancers, regulated by HIF-1α, Akt and PTEN, and required for the survival and growth of multiple cancer types. Although most functional studies of the role of PFKFB3 in cancer progression have invoked its well-recognized function in the regulation of glycolysis, recent observations have established that PFKFB3 also traffics to the nucleus and that its product, F2,6BP, activates cyclin-dependent kinases (Cdks). In particular, F2,6BP stimulates the Cdk-mediated phosphorylation of the Cip/Kip protein p27 (threonine 187), which in turn results in p27's ubiquitination and proteasomal degradation. As p27 is a potent suppressor of the G1/S transition and activator of apoptosis, we hypothesized that the known requirement of PFKFB3 for cell cycle progression and prevention of apoptosis may be partly due to the ability of F2,6BP to activate Cdks. In this study, we demonstrate that siRNA silencing of endogenous PFKFB3 inhibits Cdk1 activity, which in turn stabilizes p27 protein levels causing cell cycle arrest at G1/S and increased apoptosis in HeLa cells. Importantly, we demonstrate that the increase in apoptosis and suppression of the G1/S transition caused by siRNA silencing of PFKFB3 expression is reversed by co-siRNA silencing of p27. Taken together with prior publications, these observations support a model whereby PFKFB3 and F2,6BP function not only as regulators of Pfk-1 but also of Cdk1 activity, and therefore serve to couple glucose metabolism with cell proliferation and survival in transformed cells.


Asunto(s)
Apoptosis , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Fosfofructoquinasa-2/metabolismo , Proteína Quinasa CDC2/genética , Núcleo Celular/enzimología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo , Humanos , Fosfofructoquinasa-2/genética , Fosforilación
2.
Oncogene ; 30(30): 3370-80, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21423211

RESUMEN

Choline kinase-α expression and activity are increased in multiple human neoplasms as a result of growth factor stimulation and activation of cancer-related signaling pathways. The product of choline kinase-α, phosphocholine, serves as an essential metabolic reservoir for the production of phosphatidylcholine, the major phospholipid constituent of membranes and substrate for the production of lipid second messengers. Using in silico screening for small molecules that may interact with the choline kinase-α substrate binding domain, we identified a novel competitive inhibitor, N-(3,5-dimethylphenyl)-2-[[5-(4-ethylphenyl)-1H-1,2,4-triazol-3-yl]sulfanyl] acetamide (termed CK37) that inhibited purified recombinant human choline kinase-α activity, reduced the steady-state concentration of phosphocholine in transformed cells, and selectively suppressed the growth of neoplastic cells relative to normal epithelial cells. Choline kinase-α activity is required for the downstream production of phosphatidic acid, a promoter of several Ras signaling pathways. CK37 suppressed mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT signaling, disrupted actin cytoskeletal organization, and reduced plasma membrane ruffling. Finally, administration of CK37 significantly decreased tumor growth in a lung tumor xenograft mouse model, suppressed tumor phosphocholine, and diminished activating phosphorylations of extracellular signal-regulated kinase and AKT in vivo. Together, these results further validate choline kinase-α as a molecular target for the development of agents that interrupt Ras signaling pathways, and indicate that receptor-based computational screening should facilitate the identification of new classes of choline kinase-α inhibitors.


Asunto(s)
Acetamidas/farmacología , Colina Quinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triazoles/farmacología , Actinas/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Colina Quinasa/química , Colina Quinasa/metabolismo , Biología Computacional , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Células HeLa , Humanos , Ratones , Modelos Moleculares , Fosforilación/efectos de los fármacos , Fosforilcolina/metabolismo , Conformación Proteica , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Oncogene ; 25(55): 7225-34, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16715124

RESUMEN

Neoplastic cells transport large amounts of glucose in order to produce anabolic precursors and energy within the inhospitable environment of a tumor. The ras signaling pathway is activated in several cancers and has been found to stimulate glycolytic flux to lactate. Glycolysis is regulated by ras via the activity of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFK2/FBPase), which modulate the intracellular concentration of the allosteric glycolytic activator, fructose-2,6-bisphosphate (F2,6BP). We report herein that sequential immortalization and ras-transformation of mouse fibroblasts or human bronchial epithelial cells paradoxically decreases the intracellular concentration of F2,6BP. This marked reduction in the intracellular concentration of F2,6BP sensitizes transformed cells to the antimetabolic effects of PFK2/FBPase inhibition. Moreover, despite co-expression of all four mRNA species (PFKFB1-4), heterozygotic genomic deletion of the inducible PFKFB3 gene in ras-transformed mouse lung fibroblasts suppresses F2,6BP production, glycolytic flux to lactate, and growth as soft agar colonies or tumors in athymic mice. These data indicate that the PFKFB3 protein product may serve as an essential downstream metabolic mediator of oncogenic ras, and we propose that pharmacologic inhibition of this enzyme should selectively suppress the high rate of glycolysis and growth by cancer cells.


Asunto(s)
Genes ras , Fosfofructoquinasa-2/metabolismo , Animales , Secuencia de Bases , Western Blotting , Línea Celular Transformada , Cartilla de ADN , Glucólisis , Humanos , Ratones , Fosfofructoquinasa-2/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...