Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Commun ; 15(1): 2619, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521764

RESUMEN

Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.


Asunto(s)
Coinfección , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Virus , Ratones , Animales , Humanos , Gripe Humana/patología , Linfocitos T CD8-positivos , Coinfección/patología , Receptores de Antígenos de Linfocitos T , Pulmón/patología
2.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749325

RESUMEN

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Asunto(s)
Linfocitos T CD8-positivos , Longevidad , Recién Nacido , Humanos , Anciano , Epítopos de Linfocito T/genética , Linfocitos T Citotóxicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética
3.
Immunol Cell Biol ; 101(10): 964-974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37725525

RESUMEN

Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Australia , Inmunoglobulina G , Pueblos Indígenas , Inmunidad , Anticuerpos Antivirales
4.
Nat Immunol ; 24(6): 966-978, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248417

RESUMEN

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Australia/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunación
5.
Cell Rep Med ; 4(4): 101017, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37030296

RESUMEN

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Linfocitos T CD8-positivos
7.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750048

RESUMEN

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Humanos , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Glicoproteína de la Espiga del Coronavirus
8.
Front Immunol ; 13: 812393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603215

RESUMEN

CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Australia , Linfocitos T CD8-positivos , Cromatografía Liquida , Epítopos de Linfocito T , Antígenos HLA , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Clase II , Humanos , Espectrometría de Masas en Tándem
9.
PLoS Pathog ; 18(3): e1010337, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35255101

RESUMEN

HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Australia , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Antígenos HLA-A , Humanos , Pueblos Indígenas , Virus de la Influenza B , Leucocitos Mononucleares , Péptidos
10.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607957

RESUMEN

Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.


Asunto(s)
Anticuerpos Antivirales/sangre , Pueblos Indígenas/estadística & datos numéricos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Activación de Linfocitos/inmunología , Australia , Linfocitos B/inmunología , Humanos , Inmunoglobulina G/sangre , Memoria Inmunológica/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Recuento de Linfocitos , Vacunación Masiva , Riesgo , Células T Auxiliares Foliculares/inmunología , Linfocitos T/inmunología
11.
Nat Commun ; 12(1): 2691, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976217

RESUMEN

How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/ß cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.


Asunto(s)
Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Gripe Humana/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Estudios de Cohortes , Citocinas/metabolismo , Hospitalización/estadística & datos numéricos , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Persona de Mediana Edad , Filogenia , Vacunación/métodos
12.
Cell Rep Med ; 2(3): 100208, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33564749

RESUMEN

SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells. Importantly, activated CXCR3+cTFH1 cells in acute COVID-19 significantly correlate with and predict antibody levels and their avidity at convalescence as well as acute neutralization activity. Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R, and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19 patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19, providing important insights into potential biomarkers and immunotherapies.


Asunto(s)
Formación de Anticuerpos , COVID-19/inmunología , Inmunidad Adaptativa , Adulto , Anciano , Anticuerpos Antivirales/sangre , Linfocitos B/citología , Linfocitos B/metabolismo , COVID-19/patología , COVID-19/virología , Femenino , Humanos , Inmunidad Innata , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Masculino , Persona de Mediana Edad , Receptores CXCR3/metabolismo , Receptores de Interleucina-6/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Células TH1/citología , Células TH1/metabolismo , Adulto Joven
13.
Nat Immunol ; 20(5): 613-625, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30778243

RESUMEN

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas/inmunología , Gammainfluenzavirus/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Anciano , Animales , Linfocitos T CD8-positivos/virología , Niño , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Gammainfluenzavirus/fisiología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
14.
Immunol Cell Biol ; 97(5): 498-511, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30803026

RESUMEN

Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.


Asunto(s)
Envejecimiento , Regulación de la Expresión Génica/inmunología , Proteínas de Unión a la Región de Fijación a la Matriz , Adulto , Anciano , Envejecimiento/inmunología , Envejecimiento/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/biosíntesis , Proteínas de Unión a la Región de Fijación a la Matriz/inmunología , Persona de Mediana Edad , Especificidad de Órganos/fisiología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Timocitos/citología , Timocitos/inmunología
15.
Nat Commun ; 9(1): 5427, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575715

RESUMEN

Newly-emerged and vaccine-mismatched influenza A viruses (IAVs) result in a rapid global spread of the virus due to minimal antibody-mediated immunity. In that case, established CD8+ T-cells can reduce disease severity. However, as mutations occur sporadically within immunogenic IAV-derived T-cell peptides, understanding of T-cell receptor (TCRαß) cross-reactivity towards IAV variants is needed for a vaccine design. Here, we investigate TCRαß cross-strain recognition across IAV variants within two immunodominant human IAV-specific CD8+ T-cell epitopes, HLA-B*37:01-restricted NP338-346 (B37-NP338) and HLA-A*01:01-restricted NP44-52 (A1-NP44). We find high abundance of cross-reactive TCRαß clonotypes recognizing distinct IAV variants. Structures of the wild-type and variant peptides revealed preserved conformation of the bound peptides. Structures of a cross-reactive TCR-HLA-B37-NP338 complex suggest that the conserved conformation of the variants underpins TCR cross-reactivity. Overall, cross-reactive CD8+ T-cell responses, underpinned by conserved epitope structure, facilitates recognition of distinct IAV variants, thus CD8+ T-cell-targeted vaccines could provide protection across different IAV strains.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígeno HLA-A1/inmunología , Antígeno HLA-B37/inmunología , Virus de la Influenza A/inmunología , Humanos
16.
Vaccines (Basel) ; 6(2)2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29587436

RESUMEN

Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.

17.
Nat Commun ; 9(1): 824, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483513

RESUMEN

Severe influenza A virus (IAV) infection is associated with immune dysfunction. Here, we show circulating CD8+ T-cell profiles from patients hospitalized with avian H7N9, seasonal IAV, and influenza vaccinees. Patient survival reflects an early, transient prevalence of highly activated CD38+HLA-DR+PD-1+ CD8+ T cells, whereas the prolonged persistence of this set is found in ultimately fatal cases. Single-cell T cell receptor (TCR)-αß analyses of activated CD38+HLA-DR+CD8+ T cells show similar TCRαß diversity but differential clonal expansion kinetics in surviving and fatal H7N9 patients. Delayed clonal expansion associated with an early dichotomy at a transcriptome level (as detected by single-cell RNAseq) is found in CD38+HLA-DR+CD8+ T cells from patients who succumbed to the disease, suggesting a divergent differentiation pathway of CD38+HLA-DR+CD8+ T cells from the outset during fatal disease. Our study proposes that effective expansion of cross-reactive influenza-specific TCRαß clonotypes with appropriate transcriptome signatures is needed for early protection against severe influenza disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Selección Clonal Mediada por Antígenos/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Subgrupos de Linfocitos T/inmunología , Transcriptoma/inmunología , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/inmunología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Estudios de Cohortes , Enfermedad Crítica , Regulación de la Expresión Génica , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Hospitalización , Humanos , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/genética , Gripe Humana/mortalidad , Gripe Humana/virología , Activación de Linfocitos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Análisis de Supervivencia , Subgrupos de Linfocitos T/patología , Subgrupos de Linfocitos T/virología
18.
Sci Transl Med ; 10(428)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29444980

RESUMEN

Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (TFH) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5-CXCR3+ antibody-secreting B cell population, CD21hiCD27+ memory B cells, and CD21loCD27+ B cells. Activation of circulating TFH cells correlated with the development of both CD21lo and CD21hi memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8+, mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21hiCD27+) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating TFH cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity.


Asunto(s)
Linfocitos B/inmunología , Inmunidad Celular , Memoria Inmunológica , Gripe Humana/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Células Productoras de Anticuerpos/metabolismo , Antígenos CD/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Gripe Humana/sangre , Vacunación , Vacunas de Productos Inactivados/inmunología
19.
J Leukoc Biol ; 103(2): 321-339, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28928269

RESUMEN

Influenza epidemics lead to severe illness, life-threatening complications, and deaths, especially in the elderly. As CD8+ T cells are associated with rapid recovery from influenza, we investigated the effects of aging on antigen-specific CD8+ T cells across the universal influenza epitopes in humans. We show that aging is characterized by altered frequencies in T cell subsets, with naive T cells being partially replaced by activated effector/memory populations. Although we observed no striking differences in TCR signaling capacity, T cells in the elderly had increased expression of transcription factors Eomes and T-bet, and such changes were most apparent in CD8+ T cells. Strikingly, the numbers of antigen-specific CD8+ T cells across universal influenza epitopes were reduced in the elderly, although their effector/memory phenotypes remained stable. To understand whether diminished numbers of influenza-specific CD8+ T cells in the elderly resulted from alteration in TCR clonotypes, we dissected the TCRαß repertoire specific for the prominent HLA-A*02:01-restricted-M158-66 (A2/M158 ) influenza epitope. We provide the first ex vivo data on paired antigen-specific TCRαß clonotypes in the elderly, showing that influenza-specific A2/M158+ TCRαß repertoires in the elderly adults varied from those in younger adults, with the main features being a reduction in the frequency of the public TRAV27-TRBV19 TCRαß clonotype, increased proportion of private TCRαß signatures, broader use of TRAV and TRBV gene segments, and large clonal expansion of private TCRαß clonotypes with longer CDR3 loops. Our study supports the development of T cell-targeted influenza vaccines that would boost the T cell compartment during life and maintain the numbers and optimal TCRαß signatures in the elderly.


Asunto(s)
Envejecimiento/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Adulto , Factores de Edad , Anciano , Linfocitos T CD8-positivos/metabolismo , Estudios de Cohortes , Epítopos de Linfocito T/sangre , Humanos , Memoria Inmunológica/inmunología , Gripe Humana/sangre , Receptores de Antígenos de Linfocitos T alfa-beta/sangre , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
20.
Nucleic Acids Res ; 46(D1): D419-D427, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28977646

RESUMEN

The ability to decode antigen specificities encapsulated in the sequences of rearranged T-cell receptor (TCR) genes is critical for our understanding of the adaptive immune system and promises significant advances in the field of translational medicine. Recent developments in high-throughput sequencing methods (immune repertoire sequencing technology, or RepSeq) and single-cell RNA sequencing technology have allowed us to obtain huge numbers of TCR sequences from donor samples and link them to T-cell phenotypes. However, our ability to annotate these TCR sequences still lags behind, owing to the enormous diversity of the TCR repertoire and the scarcity of available data on T-cell specificities. In this paper, we present VDJdb, a database that stores and aggregates the results of published T-cell specificity assays and provides a universal platform that couples antigen specificities with TCR sequences. We demonstrate that VDJdb is a versatile instrument for the annotation of TCR repertoire data, enabling a concatenated view of antigen-specific TCR sequence motifs. VDJdb can be accessed at https://vdjdb.cdr3.net and https://github.com/antigenomics/vdjdb-db.


Asunto(s)
Antígenos/química , Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Receptores de Antígenos de Linfocitos T/química , Programas Informáticos , Secuencia de Aminoácidos , Animales , Antígenos/inmunología , Antígenos/metabolismo , Sitios de Unión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Macaca mulatta , Complejo Mayor de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/inmunología , Ratones , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Análisis de la Célula Individual , Linfocitos T/citología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...