Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pediatr ; 11: 1251914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078329

RESUMEN

Status epilepticus (SE) is a medical emergency resulting from the failure of the mechanisms involved in seizure termination or from the initiation of pathways involved in abnormally prolonged seizures, potentially leading to long-term consequences, including neuronal death and impaired neuronal networks. It can eventually evolve to refractory status epilepticus (RSE), in which the administration of a benzodiazepine and another anti-seizure medications (ASMs) had been ineffective, and super-refractory status epilepticus (SRSE), which persists for more than 24 h after the administration of general anesthesia. Objective of the present review is to highlight the link between inflammation and SE. Several preclinical and clinical studies have shown that neuroinflammation can contribute to seizure onset and recurrence by increasing neuronal excitability. Notably, microglia and astrocytes can promote neuroinflammation and seizure susceptibility. In fact, inflammatory mediators released by glial cells might enhance neuronal excitation and cause drug resistance and seizure recurrence. Understanding the molecular mechanisms of neuroinflammation could be crucial for improving SE treatment, wich is currently mainly addressed with benzodiazepines and eventually phenytoin, valproic acid, or levetiracetam. IL-1ß signal blockade with Anakinra has shown promising results in avoiding seizure recurrence and generalization in inflammatory refractory epilepsy. Inhibiting the IL-1ß converting enzyme (ICE)/caspase-1 is also being investigated as a possible target for managing drug-resistant epilepsies. Targeting the ATP-P2X7R signal, which activates the NLRP3 inflammasome and triggers inflammatory molecule release, is another avenue of research. Interestingly, astaxanthin has shown promise in attenuating neuroinflammation in SE by inhibiting the ATP-P2X7R signal. Furthermore, IL-6 blockade using tocilizumab has been effective in RSE and in reducing seizures in patients with febrile infection-related epilepsy syndrome (FIRES). Other potential approaches include the ketogenic diet, which may modulate pro-inflammatory cytokine production, and the use of cannabidiol (CBD), which has demonstrated antiepileptic, neuroprotective, and anti-inflammatory properties, and targeting HMGB1-TLR4 axis. Clinical experience with anti-cytokine agents such as Anakinra and Tocilizumab in SE is currently limited, although promising. Nonetheless, Etanercept and Rituximab have shown efficacy only in specific etiologies of SE, such as autoimmune encephalitis. Overall, targeting inflammatory pathways and cytokines shows potential as an innovative therapeutic option for drug-resistant epilepsies and SE, providing the chance of directly addressing its underlying mechanisms, rather than solely focusing on symptom control.

2.
Eur J Clin Microbiol Infect Dis ; 34(10): 1999-2007, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173694

RESUMEN

Candida spp. usually colonize ulcerative lesions of atrophic mucosa in patients with chemotherapy-induced oral mucositis inducing severe inflammation. The spread of antifungal-resistant strains strongly encouraged the search of complementary or alternative therapeutic strategies to cure inflamed mucosa. In this paper, we studied the effects of a near-infrared (NIR) laser system with dual-wavelength emission (808 nm + 904 nm) on the survival and inflammatory potential of C. albicans, C. glabrata, and C. parapsilosis. Laser treatment was performed with a Multiwave Locked System laser. Survival and apoptosis of fungal strains were evaluated by colony-forming units (CFU) counting and annexin V staining. Cytokine production was evaluated by ImmunoPlex array. Laser treatment significantly affected the survival of Candida spp. by inducing apoptosis and induced a lower production of inflammatory cytokines by dendritic cells compared to untreated fungi. No differences in the survival and inflammatory potential were recorded in treated or untreated Saccharomyces cerevisiae cells, used as the control non-pathogenic microorganism. Laser treatment altered the survival and inflammatory potential of pathogenic Candida spp. These data provide experimental support to the use of NIR laser radiation as a co-adjuvant of antifungal therapy in patients with oral mucositis (OM) complicated by Candida infections.


Asunto(s)
Antineoplásicos/efectos adversos , Candida/efectos de la radiación , Candidiasis/inducido químicamente , Candidiasis/radioterapia , Terapia por Láser , Estomatitis/inducido químicamente , Estomatitis/radioterapia , Apoptosis/efectos de la radiación , Humanos , Inflamación/radioterapia
3.
Cell Death Dis ; 3: e389, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22951986

RESUMEN

Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase 1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation,sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates.


Asunto(s)
Azepinas/farmacología , Factor de Crecimiento Nervioso/farmacología , Receptor trkA/agonistas , Animales , Azepinas/química , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Peso Molecular , Células 3T3 NIH , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor trkA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Cell Death Dis ; 3: e339, 2012 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-22764098

RESUMEN

Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation, sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates.


Asunto(s)
Azepinas/farmacología , Factor de Crecimiento Nervioso/farmacología , Receptor trkA/agonistas , Animales , Azepinas/química , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Peso Molecular , Células 3T3 NIH , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor trkA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...