Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(2): e0192172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29466362

RESUMEN

How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.


Asunto(s)
Dinosaurios/fisiología , Extinción Biológica , Locomoción , Adulto , Animales , Fenómenos Biomecánicos , Femenino , Humanos , Masculino
2.
J R Soc Interface ; 14(132)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28724627

RESUMEN

How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width-the mediolateral (transverse) distance between successive footfalls-was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk-run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history.


Asunto(s)
Aves/fisiología , Dinosaurios/fisiología , Locomoción/fisiología , Caminata/fisiología , Animales , Fenómenos Biomecánicos , Femenino , Masculino , Modelos Biológicos
3.
Integr Comp Biol ; 55(6): 1142-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26337058

RESUMEN

The ability for prey to escape a pursuing predator is dependent both on the prey's speed away from the threat and on their ability to rapidly change directions, or maneuverability. Given that the biomechanical trade-off between speed and maneuverability limits the simultaneous maximization of both performance traits, animals should not select their fastest possible speeds when running away from a pursuing predator but rather a speed that maximizes the probability of successful escape. We explored how variation in the relationship between speed and maneuverability-or the shape of the trade-off-affects the optimal choice of speed for escaping predators. We used tablet-based games that simulated interactions between predators and prey (human subjects acting as predators attempting to capture "prey" moving across a screen). By defining a specific relationship between speed and maneuverability, we could test the survival of each of the possible behavioral choices available to this phenotype, i.e., the best combination of speed and maneuverability for prey fitness, based on their ability to escape. We found that the shape of the trade-off function affected the prey's optimal speed for success in escaping, the prey's maximum performance in escaping, and the breadth of speeds over which the prey's performance was high. The optimal speed for escape varied only when the trade-off between speed and maneuverability was non-linear. Phenotypes possessing trade-off functions for which maneuverability was only compromised at high speeds exhibited lower optimal speeds. Phenotypes that exhibited greater increases in maneuverability for any decrease in speed were more likely to have broader ranges of performance, meaning that individuals could attain their maximum performance across a broader range of speeds. We also found that there was a differential response of the subject's learning to these different components of locomotion. With increased experience through repeated trials, subjects were able to successfully catch faster and faster dots. However, no improvement was observed in the subject's ability to capture more maneuverable prey. Our work highlights the costs of high-speed movement on other traits, including maneuverability, which make the use of an animal's fastest speeds unlikely, even when attempting to escape predators. By investigating the shape of the trade-off functions between speed and maneuverability and the way the environment and morphology mediates this trade-off, we can begin to understand why animals choose to move at the speeds they do when they are running away from predators or attempting to capture prey.


Asunto(s)
Reacción de Fuga/fisiología , Locomoción/fisiología , Animales , Fenómenos Biomecánicos , Conducta Predatoria
4.
J Evol Biol ; 25(1): 90-102, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22023155

RESUMEN

Carnivorous plants of the genus Nepenthes have evolved a striking diversity of pitcher traps that rely on specialized slippery surfaces for prey capture. With a comparative study of trap morphology, we show that Nepenthes pitcher plants have evolved specific adaptations for the use of either one of two distinct trapping mechanisms: slippery wax crystals on the inner pitcher wall and 'insect aquaplaning' on the wet upper rim (peristome). Species without wax crystals had wider peristomes with a longer inward slope. Ancestral state reconstructions identified wax crystal layers and narrow, symmetrical peristomes as ancestral, indicating that wax crystals have been reduced or lost multiple times independently. Our results complement recent reports of nutrient source specializations in Nepenthes and suggest that these specializations may have driven speciation and rapid diversification in this genus.


Asunto(s)
Carnivoría , Caryophyllaceae/anatomía & histología , Componentes Aéreos de las Plantas/anatomía & histología , Adaptación Biológica , Biodiversidad , Carnivoría/fisiología , Caryophyllaceae/química , Caryophyllaceae/genética , Caryophyllaceae/fisiología , Especiación Genética , Funciones de Verosimilitud , Filogenia , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/fisiología , Ceras/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...