Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACC CardioOncol ; 6(2): 217-232, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38774018

RESUMEN

Background: Anthracycline-induced cardiotoxicity (AIC) debilitates quality of life in cancer survivors. Serial characterizations are lacking of the molecular processes occurring with AIC. Objectives: The aim of this study was to characterize AIC progression in a mouse model from early (subclinical) to advanced heart failure stages, with an emphasis on cardiac metabolism and mitochondrial structure and function. Methods: CD1 mice received 5 weekly intraperitoneal doxorubicin injections (5 mg/kg) and were followed by serial echocardiography for 15 weeks. At 1, 9, and 15 weeks after the doxorubicin injections, mice underwent fluorodeoxyglucose positron emission tomography, and hearts were extracted for microscopy and molecular analysis. Results: Cardiac atrophy was evident at 1 week post-doxorubicin (left ventricular [LV] mass 117 ± 26 mg vs 97 ± 25 mg at baseline and 1 week, respectively; P < 0.001). Cardiac mass nadir was observed at week 3 post-doxorubicin (79 ± 16 mg; P = 0.002 vs baseline), remaining unchanged thereafter. Histology confirmed significantly reduced cardiomyocyte area (167 ± 19 µm2 in doxorubicin-treated mice vs 211 ± 26 µm2 in controls; P = 0.004). LV ejection fraction declined from week 6 post-doxorubicin (49% ± 9% vs 61% ± 9% at baseline; P < 0.001) until the end of follow-up at 15 weeks (43% ± 8%; P < 0.001 vs baseline). At 1 week post-doxorubicin, when LV ejection fraction remained normal, reduced cardiac metabolism was evident from down-regulated markers of fatty acid oxidation and glycolysis. Metabolic impairment continued to the end of follow-up in parallel with reduced mitochondrial adenosine triphosphate production. A transient early up-regulation of nutrient-sensing and mitophagy markers were observed, which was associated with mitochondrial enlargement. Later stages, when mitophagy was exhausted, were characterized by overt mitochondrial fragmentation. Conclusions: Cardiac atrophy, global hypometabolism, early transient-enhanced mitophagy, biogenesis, and nutrient sensing constitute candidate targets for AIC prevention.

2.
Antioxidants (Basel) ; 13(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247530

RESUMEN

While reperfusion, or restoration of coronary blood flow in acute myocardial infarction, is a requisite for myocardial salvage, it can paradoxically induce a specific damage known as ischemia/reperfusion (I/R) injury. Our understanding of the precise pathophysiological molecular alterations leading to I/R remains limited. In this study, we conducted a comprehensive and unbiased time-course analysis of post-translational modifications (PTMs) in the post-reperfused myocardium of two different animal models (pig and mouse) and evaluated the effect of two different cardioprotective therapies (ischemic preconditioning and neutrophil depletion). In pigs, a first wave of irreversible oxidative damage was observed at the earliest reperfusion time (20 min), impacting proteins essential for cardiac contraction. A second wave, characterized by irreversible oxidation on different residues and reversible Cys oxidation, occurred at late stages (6-12 h), affecting mitochondrial, sarcomere, and inflammation-related proteins. Ischemic preconditioning mitigated the I/R damage caused by the late oxidative wave. In the mouse model, the two-phase pattern of oxidative damage was replicated, and neutrophil depletion mitigated the late wave of I/R-related damage by preventing both Cys reversible oxidation and irreversible oxidation. Altogether, these data identify protein PTMs occurring late after reperfusion as an actionable therapeutic target to reduce the impact of I/R injury.

3.
Br J Pharmacol ; 180(4): 459-478, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36181002

RESUMEN

BACKGROUND AND PURPOSE: Reperfusion therapy is the standard of care for ischaemic stroke; however, there is a need to identify new therapeutic targets able to ameliorate cerebral damage. Neutrophil ß1 adrenoceptors (ß1AR) have been linked to neutrophil migration during exacerbated inflammation. Given the central role of neutrophils in cerebral damage during stroke, we hypothesize that ß1AR blockade will improve stroke outcomes. EXPERIMENTAL APPROACH: Rats were subjected to middle cerebral artery occlusion-reperfusion to evaluate the effect on stroke of the selective ß1AR blocker metoprolol (12.5 mg·kg-1 ) when injected i.v. 10 min before reperfusion. KEY RESULTS: Magnetic resonance imaging and histopathology analysis showed that pre-reperfusion i.v. metoprolol reduced infarct size. This effect was accompanied by reduced cytotoxic oedema at 24 h and vasogenic oedema at 7 days. Metoprolol-treated rats showed reduced brain neutrophil infiltration and those which infiltrated displayed a high proportion of anti-inflammatory phenotype (N2, YM1+ ). Additional inflammatory models demonstrated that metoprolol specifically blocked neutrophil migration via ß1AR and excluded a significant effect on the glia compartment. Consistently, metoprolol did not protect the brain in neutrophil-depleted rats upon stroke. In patients suffering an ischaemic stroke, ß1AR blockade by metoprolol reduced circulating neutrophil-platelet co-aggregates. CONCLUSIONS AND IMPLICATIONS: Our findings describe that ß1AR blockade ameliorates cerebral damage by targeting neutrophils, identifying a novel therapeutic target to improve outcomes in patients with stroke. This therapeutic strategy is in the earliest stages of the translational pathway and should be further explored.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Metoprolol/farmacología , Metoprolol/uso terapéutico , Metoprolol/metabolismo , Neutrófilos/metabolismo , Enfermedades Neuroinflamatorias , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Receptores Adrenérgicos/metabolismo
4.
Basic Res Cardiol ; 117(1): 62, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36445563

RESUMEN

Aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and heart failure (HF). There is a lack of therapies able to prevent/revert AS-induced HF. Beta3 adrenergic receptor (ß3AR) signaling is beneficial in several forms of HF. Here, we studied the potential beneficial effect of ß3AR overexpression on AS-induced HF. Selective ß3AR stimulation had a positive inotropic effect. Transgenic mice constitutively overexpressing human ß3AR in the heart (c-hß3tg) were protected from the development of HF in response to induced AS, and against cardiomyocyte mitochondrial dysfunction (fragmented mitochondria with remodeled cristae and metabolic reprogramming featuring altered substrate use). Similar beneficial effects were observed in wild-type mice inoculated with adeno-associated virus (AAV9) inducing cardiac-specific overexpression of human ß3AR before AS induction. Moreover, AAV9-hß3AR injection into wild-type mice at late disease stages, when cardiac hypertrophy and metabolic reprogramming are already advanced, reversed the HF phenotype and restored balanced mitochondrial dynamics, demonstrating the potential of gene-therapy-mediated ß3AR overexpression in AS. Mice with cardiac specific ablation of Yme1l (cYKO), characterized by fragmented mitochondria, showed an increased mortality upon AS challenge. AAV9-hß3AR injection in these mice before AS induction reverted the fragmented mitochondria phenotype and rescued them from death. In conclusion, our results step out that ß3AR overexpression might have translational potential as a therapeutic strategy in AS-induced HF.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Receptores Adrenérgicos beta 3 , Dinámicas Mitocondriales , Hipertrofia Ventricular Izquierda , Miocitos Cardíacos , Ratones Transgénicos , Metaloendopeptidasas
5.
Small ; 18(6): e2105421, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854563

RESUMEN

Exosomes are cell-derived nanovesicles with a proven intercellular signaling role in inflammation processes and immune response. Due to their natural origin and liposome-like structure, these nanometer-scale vesicles have emerged as novel platforms for therapy and diagnosis. In this work, goat milk exosomes are isolated and fully characterized in terms of their physicochemical properties, proteomics, and biochemical profile in healthy mice, and used to detect inflammatory processes by optical imaging. For the in vitro and in vivo experiments, the exosomes are covalently labeled with the commercial fluorophores sulfo-Cyanine 5 and BODIPY-FL to create nanoprobes. In vitro studies using confocal imaging, flow cytometry, and colorimetric assays confirm the internalization of the nanoprobes as well their lack of cytotoxicity in macrophage populations RAW 264.7. Optical imaging in the mouse peritoneal region confirms the in vivo ability of one of the nanoprobes to localize inflammatory processes. In vivo imaging shows exosome uptake in the inflamed peritoneal region, and flow-cytometric analysis of peritonitis exudates confirms the uptake by macrophage and neutrophil populations. These results support the promising use of goat milk exosomes as natural probes in the detection of inflammatory processes.


Asunto(s)
Exosomas , Leche/química , Nanopartículas , Animales , Cabras , Ratones , Imagen Óptica
6.
J Am Coll Cardiol ; 78(10): 1001-1011, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34474731

RESUMEN

BACKGROUND: Severe coronavirus disease-2019 (COVID-19) can progress to an acute respiratory distress syndrome (ARDS), which involves alveolar infiltration by activated neutrophils. The beta-blocker metoprolol has been shown to ameliorate exacerbated inflammation in the myocardial infarction setting. OBJECTIVES: The purpose of this study was to evaluate the effects of metoprolol on alveolar inflammation and on respiratory function in patients with COVID-19-associated ARDS. METHODS: A total of 20 COVID-19 patients with ARDS on invasive mechanical ventilation were randomized to metoprolol (15 mg daily for 3 days) or control (no treatment). All patients underwent bronchoalveolar lavage (BAL) before and after metoprolol/control. The safety of metoprolol administration was evaluated by invasive hemodynamic and electrocardiogram monitoring and echocardiography. RESULTS: Metoprolol administration was without side effects. At baseline, neutrophil content in BAL did not differ between groups. Conversely, patients randomized to metoprolol had significantly fewer neutrophils in BAL on day 4 (median: 14.3 neutrophils/µl [Q1, Q3: 4.63, 265 neutrophils/µl] vs median: 397 neutrophils/µl [Q1, Q3: 222, 1,346 neutrophils/µl] in the metoprolol and control groups, respectively; P = 0.016). Metoprolol also reduced neutrophil extracellular traps content and other markers of lung inflammation. Oxygenation (PaO2:FiO2) significantly improved after 3 days of metoprolol treatment (median: 130 [Q1, Q3: 110, 162] vs median: 267 [Q1, Q3: 199, 298] at baseline and day 4, respectively; P = 0.003), whereas it remained unchanged in control subjects. Metoprolol-treated patients spent fewer days on invasive mechanical ventilation than those in the control group (15.5 ± 7.6 vs 21.9 ± 12.6 days; P = 0.17). CONCLUSIONS: In this pilot trial, intravenous metoprolol administration to patients with COVID-19-associated ARDS was safe, reduced exacerbated lung inflammation, and improved oxygenation. Repurposing metoprolol for COVID-19-associated ARDS appears to be a safe and inexpensive strategy that can alleviate the burden of the COVID-19 pandemic.


Asunto(s)
COVID-19/transmisión , Enfermedad Crítica/terapia , Metoprolol/administración & dosificación , Pandemias , Respiración Artificial/métodos , SARS-CoV-2 , Antagonistas de Receptores Adrenérgicos beta 1/administración & dosificación , Adulto , Anciano , COVID-19/epidemiología , Femenino , Humanos , Inyecciones Intravenosas , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos
7.
Eur Heart J ; 41(46): 4425-4440, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33026079

RESUMEN

AIMS: Clinical guidelines recommend early intravenous ß-blockers during ongoing myocardial infarction; however, it is unknown whether all ß-blockers exert a similar cardioprotective effect. We experimentally compared three clinically approved intravenous ß-blockers. METHODS AND RESULTS: Mice undergoing 45 min/24 h ischaemia-reperfusion (I/R) received vehicle, metoprolol, atenolol, or propranolol at min 35. The effect on neutrophil infiltration was tested in three models of exacerbated inflammation. Neutrophil migration was evaluated in vitro and in vivo by intravital microscopy. The effect of ß-blockers on the conformation of the ß1 adrenergic receptor was studied in silico. Of the tested ß-blockers, only metoprolol ameliorated I/R injury [infarct size (IS) = 18.0% ± 0.03% for metoprolol vs. 35.9% ± 0.03% for vehicle; P < 0.01]. Atenolol and propranolol had no effect on IS. In the three exacerbated inflammation models, neutrophil infiltration was significantly attenuated only in the presence of metoprolol (60%, 50%, and 70% reductions vs. vehicle in myocardial I/R injury, thioglycolate-induced peritonitis, and lipopolysaccharide-induced acute lung injury, respectively). Migration studies confirmed the particular ability of metoprolol to disrupt neutrophil dynamics. In silico analysis indicated different intracellular ß1 adrenergic receptor conformational changes when bound to metoprolol than to the other two ß-blockers. CONCLUSIONS: Metoprolol exerts a disruptive action on neutrophil dynamics during exacerbated inflammation, resulting in an infarct-limiting effect not observed with atenolol or propranolol. The differential effect of ß-blockers may be related to distinct conformational changes in the ß1 adrenergic receptor upon metoprolol binding. If these data are confirmed in a clinical trial, metoprolol should become the intravenous ß-blocker of choice for patients with ongoing infarction.


Asunto(s)
Metoprolol , Infarto del Miocardio , Antagonistas Adrenérgicos beta/farmacología , Animales , Atenolol/farmacología , Humanos , Inflamación , Metoprolol/farmacología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...