Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843585

RESUMEN

Visual perception in natural environments depends on the ability to focus on salient stimuli while ignoring distractions. This kind of selective visual attention is associated with gamma activity in the visual cortex. While the nucleus reticularis thalami (nRT) has been implicated in selective attention, its role in modulating gamma activity in the visual cortex remains unknown. Here, we show that somatostatin- (SST) but not parvalbumin-expressing (PV) neurons in the visual sector of the nRT preferentially project to the dorsal lateral geniculate nucleus (dLGN), and modulate visual information transmission and gamma activity in primary visual cortex (V1). These findings pinpoint the SST neurons in nRT as powerful modulators of the visual information encoding accuracy in V1 and represent a novel circuit through which the nRT can influence representation of visual information.


Asunto(s)
Ritmo Gamma/fisiología , Neuronas/fisiología , Núcleos Talámicos/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Femenino , Masculino , Ratones , Somatostatina/metabolismo
2.
Cell Rep ; 26(5): 1157-1173.e5, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699346

RESUMEN

Mafb and c-Maf transcription factor (TF) expression is enriched in medial ganglionic eminence (MGE) lineages, beginning in late-secondary progenitors and continuing into mature parvalbumin (PV+) and somatostatin (SST+) interneurons. However, the functions of Maf TFs in MGE development remain to be elucidated. Herein, Mafb and c-Maf were conditionally deleted, alone and together, in the MGE and its lineages. Analyses of Maf mutant mice revealed redundant functions of Mafb and c-Maf in secondary MGE progenitors, where they repress the generation of SST+ cortical and hippocampal interneurons. By contrast, Mafb and c-Maf have distinct roles in postnatal cortical interneuron (CIN) morphological maturation, synaptogenesis, and cortical circuit integration. Thus, Mafb and c-Maf have redundant and opposing functions at different steps in CIN development.


Asunto(s)
Linaje de la Célula , Corteza Cerebral/metabolismo , Interneuronas/metabolismo , Factor de Transcripción MafB/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Potenciales de Acción , Animales , Animales Recién Nacidos , Apoptosis , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Hipocampo/metabolismo , Eminencia Media/metabolismo , Ratones Noqueados , Neuritas/metabolismo , Neurogénesis , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Sinapsis/metabolismo
4.
Cell Rep ; 26(1): 54-64.e6, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605686

RESUMEN

Loss of function in the Scn1a gene leads to a severe epileptic encephalopathy called Dravet syndrome (DS). Reduced excitability in cortical inhibitory neurons is thought to be the major cause of DS seizures. Here, in contrast, we show enhanced excitability in thalamic inhibitory neurons that promotes the non-convulsive seizures that are a prominent yet poorly understood feature of DS. In a mouse model of DS with a loss of function in Scn1a, reticular thalamic cells exhibited abnormally long bursts of firing caused by the downregulation of calcium-activated potassium SK channels. Our study supports a mechanism in which loss of SK activity causes the reticular thalamic neurons to become hyperexcitable and promote non-convulsive seizures in DS. We propose that reduced excitability of inhibitory neurons is not global in DS and that non-GABAergic mechanisms such as SK channels may be important targets for treatment.


Asunto(s)
Epilepsias Mioclónicas/fisiopatología , Convulsiones/fisiopatología , Tálamo/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
5.
Neuron ; 98(1): 75-89.e5, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29551491

RESUMEN

Inhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD. Increased Nav1.1 levels accelerated action potential kinetics of transplanted fast-spiking and non-fast-spiking interneurons. Nav1.1-deficient interneuron transplants were sufficient to cause behavioral abnormalities in wild-type mice. We conclude that the efficacy of interneuron transplantation and the function of transplanted cells in an AD-relevant context depend on their Nav1.1 levels. Disease-specific molecular optimization of cell transplants may be required to ensure therapeutic benefits in different conditions.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ondas Encefálicas/fisiología , Encéfalo/metabolismo , Cognición/fisiología , Interneuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Animales , Encéfalo/cirugía , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/metabolismo , Hipocampo/cirugía , Humanos , Interneuronas/trasplante , Locomoción/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética
6.
Cell Rep ; 19(10): 2130-2142, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591583

RESUMEN

Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT) gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV) and somatostatin (SOM) expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Núcleos Talámicos/metabolismo , Animales , Corteza Cerebral/citología , Femenino , Humanos , Masculino , Ratones , Neuronas/citología , Parvalbúminas/biosíntesis , Somatostatina/biosíntesis , Núcleos Talámicos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...