Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 270: 119956, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863549

RESUMEN

EEG alpha power varies under many circumstances requiring visual attention. However, mounting evidence indicates that alpha may not only serve visual processing, but also the processing of stimuli presented in other sensory modalities, including hearing. We previously showed that alpha dynamics during an auditory task vary as a function of competition from the visual modality (Clements et al., 2022) suggesting that alpha may be engaged in multimodal processing. Here we assessed the impact of allocating attention to the visual or auditory modality on alpha dynamics at parietal and occipital electrodes, during the preparatory period of a cued-conflict task. In this task, bimodal precues indicated the modality (vision, hearing) relevant to a subsequent reaction stimulus, allowing us to assess alpha during modality-specific preparation and while switching between modalities. Alpha suppression following the precue occurred in all conditions, indicating that it may reflect general preparatory mechanisms. However, we observed a switch effect when preparing to attend to the auditory modality, in which greater alpha suppression was elicited when switching to the auditory modality compared to repeating. No switch effect was evident when preparing to attend to visual information (although robust suppression did occur in both conditions). In addition, waning alpha suppression preceded error trials, irrespective of sensory modality. These findings indicate that alpha can be used to monitor the level of preparatory attention to process both visual and auditory information, and support the emerging view that alpha band activity may index a general attention control mechanism used across modalities.


Asunto(s)
Visión Ocular , Percepción Visual , Humanos , Audición , Percepción Auditiva , Estimulación Luminosa , Estimulación Acústica , Tiempo de Reacción
2.
J Neurosci ; 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35970561

RESUMEN

Research into the nature of 1/f-like, non-oscillatory electrophysiological activity has grown exponentially in recent years in cognitive neuroscience. The shape of this activity has been linked to the balance between excitatory and inhibitory neural circuits, which is thought to be important for information processing. However, to date, it is not known whether the presentation of a stimulus induces changes in the parameters of 1/f activity in scalp recordings, separable from event-related potentials (ERPs). Here, we analyzed event-related broadband changes in human EEG both before and after removing ERPs to demonstrate their confounding effect, and to establish whether there are genuine stimulus-induced changes in 1/f Using data from a passive and an active auditory task (n = 23, 61% female), we found that the shape of the post-event spectra between 2-25 Hz differed significantly from the pre-event spectra even after removing the frequency-content of ERPs. Further, a significant portion of this difference could be accounted for by a rotational shift in 1/f activity, manifesting as an increase in low and a decrease in high frequencies. Importantly, the magnitude of this rotational shift was related to the attentional demands of the task. This change in 1/f is consistent with increased inhibition following stimulus onset, and likely reflects a disruption of ongoing excitatory activity proportional to processing demands. Finally, these findings contradict the central assumption of baseline normalization strategies in time-frequency analyses, namely that background EEG activity is stationary across time. As such, they have far-reaching consequences relevant for several subfields of neuroscience.SIGNIFICANCE STATEMENT:Interest in the functional role of the 1/f-like background brain activity has been growing exponentially in neuroscience. Yet, no study to date has demonstrated a clear relationship between information processing and 1/f activity by investigating event-related effects on its parameters in non-invasive recordings of neural activity. Here, we demonstrate for the first time that stimuli induce rotational changes in 1/f activity, detectable at lower frequencies and independent from the occurrence of event-related potentials. These findings suggest the presence of large-scale inhibition following stimulus onset, largest when the stimulus is novel, and indicate that the assumption of stationary background activity in the analysis of neural oscillations is untenable. These results have far-reaching consequences that cut across several subfields of neuroscience.

3.
Neuroimage ; 252: 119048, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35248706

RESUMEN

In the face of multiple sensory streams, there may be competition for processing resources in multimodal cortical areas devoted to establishing representations. In such cases, alpha oscillations may serve to maintain the relevant representations and protect them from interference, whereas theta band activity may facilitate their updating when needed. It can be hypothesized that these oscillations would differ in response to an auditory stimulus when the eyes are open or closed, as intermodal resource competition may be more prominent in the former than in the latter case. Across two studies we investigated the role of alpha and theta power in multimodal competition using an auditory task with the eyes open and closed, respectively enabling and disabling visual processing in parallel with the incoming auditory stream. In a passive listening task (Study 1a), we found alpha suppression following a pip tone with both eyes open and closed, but subsequent alpha enhancement only with closed eyes. We replicated this eyes-closed alpha enhancement in an independent sample (Study 1b). In an active auditory oddball task (Study 2), we again observed the eyes open/eyes closed alpha pattern found in Study 1 and also demonstrated that the more attentionally demanding oddball trials elicited the largest oscillatory effects. Theta power did not interact with eye status in either study. We propose a hypothesis to account for the findings in which alpha may be endemic to multimodal cortical areas in addition to visual ones.


Asunto(s)
Percepción Auditiva , Electroencefalografía , Ritmo alfa/fisiología , Percepción Auditiva/fisiología , Cognición , Humanos , Percepción Visual/fisiología
4.
Psychol Learn Motiv ; 77: 69-123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37139101

RESUMEN

In this review we start from the assumption that, to fully understand cognitive aging, it is important to embrace a holistic view, integrating changes in bodily, brain, and cognitive functions. This broad view can help explain individual differences in aging trajectories and could ultimately enable prevention and remediation strategies. As the title of this review suggests, we claim that there are not only indirect but also direct effects of various organ systems on the brain, creating cascades of phenomena that strongly contribute to age-related cognitive decline. Here we focus primarily on the cerebrovascular system, because of its direct effects on brain health and close connections with the development and progression of Alzheimer's Disease and other types of dementia. We start by reviewing the main cognitive changes that are often observed in normally aging older adults, as well as the brain systems that support them. Second, we provide a brief overview of the cerebrovascular system and its known effects on brain anatomy and function, with a focus on aging. Third, we review genetic and lifestyle risk factors that may affect the cerebrovascular system and ultimately contribute to cognitive decline. Lastly, we discuss this evidence, review limitations, and point out avenues for additional research and clinical intervention.

5.
Neuroimage ; 237: 118192, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34048899

RESUMEN

Typically, time-frequency analysis (TFA) of electrophysiological data is aimed at isolating narrowband signals (oscillatory activity) from broadband non-oscillatory (1/f) activity, so that changes in oscillatory activity resulting from experimental manipulations can be assessed. A widely used method to do this is to convert the data to the decibel (dB) scale through baseline division and log transformation. This procedure assumes that, for each frequency, sources of power (i.e., oscillations and 1/f activity) scale by the same factor relative to the baseline (multiplicative model). This assumption may be incorrect when signal and noise are independent contributors to the power spectrum (additive model). Using resting-state EEG data from 80 participants, we found that the level of 1/f activity and alpha power are not positively correlated within participants, in line with the additive but not the multiplicative model. Then, to assess the effects of dB conversion on data that violate the multiplicativity assumption, we simulated a mixed design study with one between-subject (noise level, i.e., level of 1/f activity) and one within-subject (signal amplitude, i.e., amplitude of oscillatory activity added onto the background 1/f activity) factor. The effect size of the noise level × signal amplitude interaction was examined as a function of noise difference between groups, following dB conversion. Findings revealed that dB conversion led to the over- or under-estimation of the true interaction effect when groups differing in 1/f levels were compared, and it also led to the emergence of illusory interactions when none were present. This is because signal amplitude was systematically underestimated in the noisier compared to the less noisy group. Hence, we recommend testing whether the level of 1/f activity differs across groups or conditions and using multiple baseline correction strategies to validate results if it does. Such a situation may be particularly common in aging, developmental, or clinical studies.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía/métodos , Neuroimagen Funcional/métodos , Magnetoencefalografía/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Ondas Encefálicas/fisiología , Electroencefalografía/normas , Femenino , Neuroimagen Funcional/normas , Humanos , Magnetoencefalografía/normas , Masculino , Adulto Joven
6.
Front Hum Neurosci ; 15: 621620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841114

RESUMEN

The resting-state human electroencephalogram (EEG) power spectrum is dominated by alpha (8-12 Hz) and theta (4-8 Hz) oscillations, and also includes non-oscillatory broadband activity inversely related to frequency (1/f activity). Gratton proposed that alpha and theta oscillations are both related to cognitive control function, though in a complementary manner. Alpha activity is hypothesized to facilitate the maintenance of representations, such as task sets in preparation for expected task conditions. In contrast, theta activity would facilitate changes in representations, such as the updating of task sets in response to unpredicted task demands. Therefore, theta should be related to reactive control (which may prompt changes in task representations), while alpha may be more relevant to proactive control (which implies the maintenance of current task representations). Less is known about the possible relationship between 1/f activity and cognitive control, which was analyzed here in an exploratory fashion. To investigate these hypothesized relationships, we recorded eyes-open and eyes-closed resting-state EEG from younger and older adults and subsequently tested their performance on a cued flanker task, expected to elicit both proactive and reactive control processes. Results showed that alpha power and 1/f offset were smaller in older than younger adults, whereas theta power did not show age-related reductions. Resting alpha power and 1/f offset were associated with proactive control processes, whereas theta power was related to reactive control as measured by the cued flanker task. All associations were present over and above the effect of age, suggesting that these resting-state EEG correlates could be indicative of trait-like individual differences in cognitive control performance, which may be already evident in younger adults, and are still similarly present in healthy older adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...