Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Res Toxicol ; 31(11): 1119-1127, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30350600

RESUMEN

Adverse events resulting from drug therapy can be a cause of drug withdrawal, reduced and or restricted clinical use, as well as a major economic burden for society. To increase the safety of new drugs, there is a need to better understand the mechanisms causing the adverse events. One way to derive new mechanistic hypotheses is by linking data on drug adverse events with the drugs' biological targets. In this study, we have used data mining techniques and mutual information statistical approaches to find associations between reported adverse events collected from the FDA Adverse Event Reporting System and assay outcomes from ToxCast, with the aim to generate mechanistic hypotheses related to structural cardiotoxicity (morphological damage to cardiomyocytes and/or loss of viability). Our workflow identified 22 adverse event-assay outcome associations. From these associations, 10 implicated targets could be substantiated with evidence from previous studies reported in the literature. For two of the identified targets, we also describe a more detailed mechanism, forming putative adverse outcome pathways associated with structural cardiotoxicity. Our study also highlights the difficulties deriving these type of associations from the very limited amount of data available.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Cardiopatías/inducido químicamente , Modelos Teóricos , Sistemas de Registro de Reacción Adversa a Medicamentos , Animales , Minería de Datos , Bases de Datos Factuales , Humanos , Estados Unidos , United States Food and Drug Administration
2.
J Toxicol Pathol ; 29(3 Suppl): 1S-47S, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27621537

RESUMEN

The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The primary purpose of this publication is to provide a standardized nomenclature for characterizing lesions observed in the cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety assessment. The standardized nomenclature presented in this document is also available electronically for society members on the internet (http://goreni.org). Accurate and precise morphologic descriptions of changes in the CV system are important for understanding the mechanisms and pathogenesis of those changes, differentiation of natural and induced injuries and their ultimate functional consequence. Challenges in nomenclature are associated with lesions or pathologic processes that may present as a temporal or pathogenic spectrum or when natural and induced injuries share indistinguishable features. Specific nomenclature recommendations are offered to provide a consistent approach.

3.
Mutagenesis ; 27(6): 721-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22935223

RESUMEN

An in vivo photomicronucleus test (MNT) using rat skin, the target organ for photoirritancy and carcinogenicity, was recently described. The assay was evaluated using fluoroquinolone (FQ) antibiotics with varying degrees of phototoxic potency (i.e. sparflocacin [SPFX], lomefloxacin [LOFX], ciprofloxacin [CIFX], levofloxacin [LEFX], gemifloxacin [GEFX] and gatifloxacin [GAFX]) using a solar simulator producing both UVA and UVB (ratio 23:1). Experiments were performed at The Netherlands Organisation for Applied Scientific Research (TNO) and GlaxoSmithKline (GSK) to investigate interlaboratory variability, including evaluation of phototoxicity (clinical signs), micronucleus induction and histopathology. The potency of micronuclei (MN) formation in rat skin induced by the FQs was SPFX = LOFX > CIFX = LEFX, however, MN induction was only statistically significant for SPFX and LOFX. In both laboratories, GEFX and GAFX did not increase the MN frequencies compared to the irradiated vehicle control. Signs of phototoxicity, including clinical and histopathological changes, were observed with SPFX and LOFX to a similar degree as the positive control, 8-methoxypsoralen. In addition, there were some clinical signs of phototoxicity seen with CIFX, LEFX, GEFX and GAFX, but not always in both laboratories for CIFX, GEFX and GAFX and when observed, these were considered only mild. Of these, only LEFX also showed histopathological changes. In all studies, photogenotoxic potency correlated with photocarcinogenic potential and moreover, photogenotoxicity was not observed in the absence of phototoxicity. The results of the TNO/GSK study indicate that the in vivo rat skin photoMNT may be a promising tool for detection of photoclastogencity and photoirritancy in the skin/eye in the same animal. Given the association between the MNT and cancer, the skin photoMNT may also provide a promising tool for the early detection of photocarcinogenesis and help bridge the gap in the existing photosafety testing paradigm.


Asunto(s)
Antibacterianos/toxicidad , Dermatitis Fototóxica/patología , Fluoroquinolonas/toxicidad , Pruebas de Micronúcleos/métodos , Piel/efectos de la radiación , Animales , Ensayo Cometa/métodos , Masculino , Países Bajos , Ratas , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Piel/patología , Rayos Ultravioleta/efectos adversos
4.
Mutagenesis ; 25(4): 407-16, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20460329

RESUMEN

For pharmaceuticals, current regulatory guidance for photosafety testing states that studies are warranted for drug candidates that both absorb light in the range of 290-700 nm and that are either applied topically or reach the skin or eyes by systemic exposure. In contrast to standard genotoxicity evaluations, where a positive (or equivocal) result in vitro can be placed into context with additional testing in vivo, there are no equivalent short-term in vivo photogenotoxicity assays in the current photosafety test battery. Therefore, a short-term in vivo assay for the evaluation of a photogenotoxic potential in the skin, the target organ for photocarcinogenicity, was developed in rats. After oral 8-methoxypsoralen administration, rats were exposed to ultraviolet radiation and sacrificed 3 days after treatment to isolate epidermal cells for subsequent micronucleus (MN) evaluation. Optimal conditions were determined to obtain maximal induction of MN, followed by demonstrating feasibility and reproducibility of the method. The results of the present study indicate that the in vivo rat skin photomicronucleus test may be a promising tool for detection of photoclastogenicity. Given the association between MN induction and cancer, the assay may also provide a promising tool for the early detection of photocarcinogenesis and help bridge the gap in the existing photosafety testing paradigm.


Asunto(s)
Pruebas de Micronúcleos/métodos , Piel/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Masculino , Metoxaleno/administración & dosificación , Metoxaleno/toxicidad , Ratas , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...