Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 850: 158761, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36154974

RESUMEN

Accumulation of plastics in the Earth's oceans is causing widespread disruption to marine ecosystems. To help mitigate the environmental burden caused by non-degradable plastics, we have previously developed a commercially relevant polyurethane (PU) foam derived from renewable biological materials that can be depolymerized into its constituent monomers and consumed by microorganisms in soil or compost. Here we demonstrate that these same PU foams can be biodegraded by marine microorganisms in the ocean and by isolated marine microorganisms in an ex situ seawater environment. Using Fourier-transform infrared (FTIR) spectroscopy, we tracked molecular changes imparted by microbial breakdown of the PU polymers; and utilized scanning electron microscopy (SEM) to demonstrate the loss of physical structure associated with colonization of microorganisms on the PU foams. We subsequently enriched, isolated, and identified individual microorganisms, from six marine sites around San Diego, CA, that are capable of depolymerizing, metabolizing, and accumulating biomass using these PU foams as a sole carbon source. Analysis using SEM, FTIR, and gas chromatography-mass spectrometry (GCMS) confirmed that these microorganisms depolymerized the PU into its constitutive diols, diacids, and other PU fragments. SEM and FTIR results from isolated organismal biodegradation experiments exactly matched those from ex situ and ocean biodegradation samples, suggesting that these PU foam would undergo biodegradation in a natural ocean environment by enzymatic depolymerization of the PU foams and eventual uptake of the degradation products into biomass by marine microorganisms, should these foams unintentionally end up in the marine environment, as many plastics do.


Asunto(s)
Ecosistema , Poliuretanos , Biodegradación Ambiental , Carbono , Plásticos , Poliuretanos/química , Suelo
2.
Oecologia ; 182(4): 1151-1163, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27651229

RESUMEN

Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.


Asunto(s)
Arrecifes de Coral , Herbivoria , Animales , Ecología , Peces , Hawaii
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA