Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 9: 633870, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796505

RESUMEN

An integrated approach that combines reverse-phase high-performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry, untargeted ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MSE) and molecular networking (using the Global Natural Products Social molecular network platform) was used to elucidate the metabolic profiles and chemical structures of the secondary metabolites produced by pigmented (P1) and non-pigmented (NP1) Serratia marcescens (S. marcescens) strains. Tandem mass spectrometry-based molecular networking guided the structural elucidation of 18 compounds for the P1 strain (including 6 serratamolides, 10 glucosamine derivatives, prodigiosin and serratiochelin A) and 15 compounds for the NP1 strain (including 8 serratamolides, 6 glucosamine derivatives and serratiochelin A) using the MSE fragmentation profiles. The serratamolide homologues were comprised of a peptide moiety of two L-serine residues (cyclic or open-ring) linked to two fatty acid chains (lengths of C10, C12, or C12:1). Moreover, the putative structure of a novel open-ring serratamolide homologue was described. The glucosamine derivative homologues (i.e., N-butylglucosamine ester derivatives) consisted of four residues, including glucose/hexose, valine, a fatty acid chain (lengths of C13 - C17 and varying from saturated to unsaturated) and butyric acid. The putative structures of seven novel glucosamine derivative homologues and one glucosamine derivative congener (containing an oxo-hexanoic acid residue instead of a butyric acid residue) were described. Moreover, seven fractions collected during RP-HPLC, with major molecular ions corresponding to prodigiosin, serratamolides (A, B, and C), and glucosamine derivatives (A, C, and E), displayed antimicrobial activity against a clinical Enterococcus faecalis S1 strain using the disc diffusion assay. The minimum inhibitory and bactericidal concentration assays however, revealed that prodigiosin exhibited the greatest antimicrobial potency, followed by glucosamine derivative A and then the serratamolides (A, B, and C). These results provide crucial insight into the secondary metabolic profiles of pigmented and non-pigmented S. marcescens strains and confirms that S. marcescens strains are a promising natural source of novel antimicrobial metabolites.

2.
BMC Microbiol ; 19(1): 303, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870288

RESUMEN

BACKGROUND: The antimicrobial resistance of clinical, environmental and control strains of the WHO "Priority 1: Critical group" organisms, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa to various classes of antibiotics, colistin and surfactin (biosurfactant) was determined. METHODS: Acinetobacter baumannii was isolated from environmental samples and antibiotic resistance profiling was performed to classify the test organisms [A. baumannii (n = 6), P. aeruginosa (n = 5), E. coli (n = 7) and K. pneumoniae (n = 7)] as multidrug resistant (MDR) or extreme drug resistant (XDR). All the bacterial isolates (n = 25) were screened for colistin resistance and the mobilised colistin resistance (mcr) genes. Biosurfactants produced by Bacillus amyloliquefaciens ST34 were solvent extracted and characterised using ultra-performance liquid chromatography (UPLC) coupled to electrospray ionisation mass spectrometry (ESI-MS). The susceptibility of strains, exhibiting antibiotic and colistin resistance, to the crude surfactin extract (cell-free supernatant) was then determined. RESULTS: Antibiotic resistance profiling classified four A. baumannii (67%), one K. pneumoniae (15%) and one P. aeruginosa (20%) isolate as XDR, with one E. coli (15%) and three K. pneumoniae (43%) strains classified as MDR. Many of the isolates [A. baumannii (25%), E. coli (80%), K. pneumoniae (100%) and P. aeruginosa (100%)] exhibited colistin resistance [minimum inhibitory concentrations (MICs) ≥ 4 mg/L]; however, only one E. coli strain isolated from a clinical environment harboured the mcr-1 gene. UPLC-MS analysis then indicated that the B. amyloliquefaciens ST34 produced C13-16 surfactin analogues, which were identified as Srf1 to Srf5. The crude surfactin extract (10.00 mg/mL) retained antimicrobial activity (100%) against the MDR, XDR and colistin resistant A. baumannii, P. aeruginosa, E. coli and K. pneumoniae strains. CONCLUSION: Clinical, environmental and control strains of A. baumannii, P. aeruginosa, E. coli and K. pneumoniae exhibiting MDR and XDR profiles and colistin resistance, were susceptible to surfactin analogues, confirming that this lipopeptide shows promise for application in clinical settings.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Organización Mundial de la Salud , Bacterias/clasificación , Cromatografía Liquida , Colistina/farmacología , Microbiología Ambiental , Genoma Bacteriano , Humanos , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/farmacología , Tensoactivos/química , Tensoactivos/farmacología , Espectrometría de Masas en Tándem
3.
Microbiol Res ; 229: 126329, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31518853

RESUMEN

The genus Serratia is a predominantly unexplored source of antimicrobial secondary metabolites. The aim of the current study was thus to isolate and evaluate the antimicrobial properties of biosurfactants produced by Serratia species. Forty-nine (n = 34 pigmented; n = 15 non-pigmented) biosurfactant producing Serratia strains were isolated from environmental sources and selected isolates (n = 11 pigmented; n = 11 non-pigmented) were identified as Serratia marcescens using molecular typing. The swrW gene (serrawettin W1 synthetase) was detected in all the screened pigmented strains and one non-pigmented strain and primers were designed for the detection of the swrA gene (non-ribosomal serrawettin W2 synthetase), which was detected in nine non-pigmented strains. Crude extracts obtained from S. marcescens P1, NP1 and NP2 were chemically characterised using ultra-performance liquid chromatography coupled to electrospray ionisation mass spectrometry (UPLC-ESI-MS), which revealed that P1 produced serrawettin W1 homologues and prodigiosin, while NP1 produced serrawettin W1 homologues and glucosamine derivative A. In contrast, serrawettin W2 analogues were predominantly identified in the crude extract obtained from S. marcescens NP2. Both P1 and NP1 crude extracts displayed broad-spectrum antimicrobial activity against clinical, food and environmental pathogens, such as multidrug-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and Cryptococcus neoformans. In contrast, the NP2 crude extract displayed antibacterial activity against a limited range of pathogenic and opportunistic pathogens. The serrawettin W1 homologues, in combination with prodigiosin and glucosamine derivatives, produced by pigmented and non-pigmented S. marcescens strains, could thus potentially be employed as broad-spectrum therapeutic agents against multidrug-resistant bacterial and fungal pathogens.


Asunto(s)
Antibacterianos/farmacología , Depsipéptidos/farmacología , Lipoproteínas/farmacología , Péptidos Cíclicos/farmacología , Prodigiosina/farmacología , Serratia marcescens/química , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Depsipéptidos/química , Depsipéptidos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Prodigiosina/química , Prodigiosina/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Metabolismo Secundario , Serratia marcescens/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Tensoactivos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...