Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 10(4)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266880

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) Tat binds the viral RNA structure transactivation-responsive element (TAR) and recruits transcriptional cofactors, amplifying viral mRNA expression. The Tat inhibitor didehydro-cortistatin A (dCA) promotes a state of persistent latency, refractory to viral reactivation. Here we investigated mechanisms of HIV-1 resistance to dCA in vitro Mutations in Tat and TAR were not identified, consistent with the high level of conservation of these elements. Instead, viruses resistant to dCA developed higher Tat-independent basal transcription. We identified a combination of mutations in the HIV-1 promoter that increased basal transcriptional activity and modifications in viral Nef and Vpr proteins that increased NF-κB activity. Importantly, these variants are unlikely to enter latency due to accrued transcriptional fitness and loss of sensitivity to Tat feedback loop regulation. Furthermore, cells infected with these variants become more susceptible to cytopathic effects and immune-mediated clearance. This is the first report of viral escape to a Tat inhibitor resulting in heightened Tat-independent activity, all while maintaining wild-type Tat and TAR.IMPORTANCE HIV-1 Tat enhances viral RNA transcription by binding to TAR and recruiting activating factors. Tat enhances its own transcription via a positive-feedback loop. Didehydro-cortistatin A (dCA) is a potent Tat inhibitor, reducing HIV-1 transcription and preventing viral rebound. dCA activity demonstrates the potential of the "block-and-lock" functional cure approaches. We investigated the viral genetic barrier to dCA resistance in vitro While mutations in Tat and TAR were not identified, mutations in the promoter and in the Nef and Vpr proteins promoted high Tat-independent activity. Promoter mutations increased the basal transcription, while Nef and Vpr mutations increased NF-κB nuclear translocation. This heightened transcriptional activity renders CD4+ T cells infected with these viruses more susceptible to cytotoxic T cell-mediated killing and to cell death by cytopathic effects. Results provide insights on drug resistance to a novel class of antiretrovirals and reveal novel aspects of viral transcriptional regulation.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral , Regulación Viral de la Expresión Génica , VIH-1/crecimiento & desarrollo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Línea Celular , VIH-1/genética , Humanos , ARN Mensajero/biosíntesis , ARN Viral/biosíntesis , Regulación hacia Arriba , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
2.
mBio ; 10(1)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723126

RESUMEN

The intrinsically disordered HIV-1 Tat protein binds the viral RNA transactivation response structure (TAR), which recruits transcriptional cofactors, amplifying viral mRNA expression. Limited Tat transactivation correlates with HIV-1 latency. Unfortunately, Tat inhibitors are not clinically available. The small molecule didehydro-cortistatin A (dCA) inhibits Tat, locking HIV-1 in persistent latency, blocking viral rebound. We generated chemical derivatives of dCA that rationalized molecular docking of dCA to an active and specific Tat conformer. These revealed the importance of the cycloheptene ring and the isoquinoline nitrogen's positioning in the interaction with specific residues of Tat's basic domain. These features are distinct from the ones required for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known ligand of dCA. Besides, we demonstrated that dCA activity on HIV-1 transcription is independent of CDK8. The binding of dCA to Tat with nanomolar affinity alters the local protein environment, rendering Tat more resistant to proteolytic digestion. dCA thus locks a transient conformer of Tat, specifically blocking functions dependent of its basic domain, namely the Tat-TAR interaction; while proteins with similar basic patches are unaffected by dCA. Our results improve our knowledge of the mode of action of dCA and support structure-based design strategies targeting Tat, to help advance development of dCA, as well as novel Tat inhibitors.IMPORTANCE Tat activates virus production, and limited Tat transactivation correlates with HIV-1 latency. The Tat inhibitor dCA locks HIV in persistent latency. This drug class enables block-and-lock functional cure approaches, aimed at reducing residual viremia during therapy and limiting viral rebound. dCA may also have additional therapeutic benefits since Tat is also neurotoxic. Unfortunately, Tat inhibitors are not clinically available. We generated chemical derivatives and rationalized binding to an active and specific Tat conformer. dCA features required for Tat inhibition are distinct from features needed for inhibition of cyclin-dependent kinase 8 (CDK8), the only other known target of dCA. Furthermore, knockdown of CDK8 did not impact dCA's activity on HIV-1 transcription. Binding of dCA to Tat's basic domain altered the local protein environment and rendered Tat more resistant to proteolytic digestion. dCA locks a transient conformer of Tat, blocking functions dependent on its basic domain, namely its ability to amplify viral transcription. Our results define dCA's mode of action, support structure-based-design strategies targeting Tat, and provide valuable information for drug development around the dCA pharmacophore.


Asunto(s)
Fármacos Anti-VIH/metabolismo , VIH-1/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Isoquinolinas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Fármacos Anti-VIH/síntesis química , Quinasa 8 Dependiente de Ciclina/metabolismo , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Humanos , Isoquinolinas/síntesis química , Simulación del Acoplamiento Molecular , Unión Proteica
3.
Curr HIV Res ; 13(1): 64-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25613133

RESUMEN

HIV-1 Tat protein has been shown to have a crucial role in HIV-1-associated neurocognitive disorders (HAND), which includes a group of syndromes ranging from undetectable neurocognitive impairment to dementia. The abuse of psychostimulants, such as cocaine, by HIV infected individuals, may accelerate and intensify neurological damage. On the other hand, exposure to Tat potentiates cocaine-mediated reward mechanisms, which further promotes HAND. Here, we show that didehydro-Cortistatin A (dCA), an analog of a natural steroidal alkaloid, crosses the blood-brain barrier, cross-neutralizes Tat activity from several HIV-1 clades and decreases Tat uptake by glial cell lines. In addition, dCA potently inhibits Tat mediated dysregulation of IL-1ß, TNF-α and MCP-1, key neuroinflammatory signaling proteins. Importantly, using a mouse model where doxycycline induces Tat expression, we demonstrate that dCA reverses the potentiation of cocaine-mediated reward. Our results suggest that adding a Tat inhibitor, such as dCA, to current antiretroviral therapy may reduce HIV-1-related neuropathogenesis.


Asunto(s)
Fármacos Anti-VIH/farmacología , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Recompensa , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/fisiología , Animales , Fármacos Anti-VIH/farmacocinética , Quimiocinas/metabolismo , Cocaína/efectos adversos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Inflamación/metabolismo , Isoquinolinas/farmacocinética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/prevención & control
4.
Cell Host Microbe ; 12(1): 97-108, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22817991

RESUMEN

The human immunodeficiency virus type 1 (HIV) Tat protein, a potent activator of HIV gene expression, is essential for integrated viral genome expression and represents a potential antiviral target. Tat binds the 5'-terminal region of HIV mRNA's stem-bulge-loop structure, the transactivation-responsive (TAR) element, to activate transcription. We find that didehydro-Cortistatin A (dCA), an analog of a natural steroidal alkaloid from a marine sponge, inhibits Tat-mediated transactivation of the integrated provirus by binding specifically to the TAR-binding domain of Tat. Working at subnanomolar concentrations, dCA reduces Tat-mediated transcriptional initiation/elongation from the viral promoter to inhibit HIV-1 and HIV-2 replication in acutely and chronically infected cells. Importantly, dCA abrogates spontaneous viral particle release from CD4(+)T cells from virally suppressed subjects on highly active antiretroviral therapy (HAART). Thus, dCA defines a unique class of anti-HIV drugs that may inhibit viral production from stable reservoirs and reduce residual viremia during HAART.


Asunto(s)
Alcaloides/farmacología , Fármacos Anti-VIH/farmacología , VIH-1/genética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Compuestos Policíclicos/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Alcaloides/síntesis química , Alcaloides/química , Alcaloides/farmacocinética , Animales , Terapia Antirretroviral Altamente Activa , Sitios de Unión , Linfocitos T CD4-Positivos/virología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/virología , Femenino , Regulación Viral de la Expresión Génica/efectos de los fármacos , Proteína p24 del Núcleo del VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Regiones Promotoras Genéticas , Provirus/efectos de los fármacos , Provirus/genética , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
5.
PLoS One ; 7(2): e30802, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22312431

RESUMEN

Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKε, leading to IRF-3 activation and subsequent induction of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKε complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction.


Asunto(s)
Coronavirus Humano NL63/enzimología , Cisteína Endopeptidasas/metabolismo , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Transducción de Señal/inmunología , Proteínas Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biocatálisis , Membrana Celular/enzimología , Chlorocebus aethiops , Proteasas 3C de Coronavirus , Coronavirus Humano NL63/fisiología , Cisteína Endopeptidasas/química , Células HEK293 , Humanos , Quinasa I-kappa B/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferones/metabolismo , Proteínas de la Membrana/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Ubiquitinación/inmunología , Células Vero , Proteínas Virales/química
6.
J Virol ; 84(9): 4619-29, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20181693

RESUMEN

Coronaviruses encode multifunctional proteins that are critical for viral replication and for blocking the innate immune response to viral infection. One such multifunctional domain is the coronavirus papain-like protease (PLP), which processes the viral replicase polyprotein, has deubiquitinating (DUB) activity, and antagonizes the induction of type I interferon (IFN). Here we characterized the DUB and IFN antagonism activities of the PLP domains of human coronavirus NL63 and severe acute respiratory syndrome (SARS) coronavirus to determine if DUB activity mediates interferon antagonism. We found that NL63 PLP2 deconjugated ubiquitin (Ub) and the Ub-line molecule ISG15 from cellular substrates and processed both lysine-48- and lysine-63- linked polyubiquitin chains. This PLP2 DUB activity was dependent on an intact catalytic cysteine residue. We demonstrated that in contrast to PLP2 DUB activity, PLP2-mediated interferon antagonism did not require enzymatic activity. Furthermore, addition of an inhibitor that blocks coronavirus protease/DUB activity did not abrogate interferon antagonism. These results indicated that a component of coronavirus PLP-mediated interferon antagonism was independent of protease and DUB activity. Overall, these results demonstrate the multifunctional nature of the coronavirus PLP domain as a viral protease, DUB, and IFN antagonist and suggest that these independent activities may provide multiple targets for antiviral therapies.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Interferón Tipo I/antagonistas & inhibidores , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Proteasas 3C de Coronavirus , Citocinas/metabolismo , Humanos , Ubiquitinas/metabolismo
7.
Virology ; 375(1): 118-29, 2008 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-18295294

RESUMEN

Coronaviruses are positive-strand RNA viruses that replicate in the cytoplasm of infected cells by generating a membrane-associated replicase complex. The replicase complex assembles on double membrane vesicles (DMVs). Here, we studied the role of a putative replicase anchor, nonstructural protein 4 (nsp4), in the assembly of murine coronavirus DMVs. We used reverse genetics to generate infectious clone viruses (icv) with an alanine substitution at nsp4 glycosylation site N176 or N237, or an asparagine to threonine substitution (nsp4-N258T), which is proposed to confer a temperature sensitive phenotype. We found that nsp4-N237A is lethal and nsp4-N258T generated a virus (designated Alb ts6 icv) that is temperature sensitive for viral replication. Analysis of Alb ts6 icv-infected cells revealed that there was a dramatic reduction in DMVs and that both nsp4 and nsp3 partially localized to mitochondria when cells were incubated at the non-permissive temperature. These results reveal a critical role of nsp4 in directing coronavirus DMV assembly.


Asunto(s)
Virus de la Hepatitis Murina/genética , Proteínas no Estructurales Virales/genética , Ensamble de Virus , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Membrana Celular/ultraestructura , Membrana Celular/virología , Cricetinae , Humanos , Microscopía Electrónica de Transmisión , Mitocondrias/química , Virus de la Hepatitis Murina/fisiología , Virus de la Hepatitis Murina/ultraestructura , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...