Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(15): e2221000120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37027428

RESUMEN

Spatial branching processes are ubiquitous in nature, yet the mechanisms that drive their growth may vary significantly from one system to another. In soft matter physics, chiral nematic liquid crystals provide a controlled setting to study the emergence and growth dynamic of disordered branching patterns. Via an appropriate forcing, a cholesteric phase may nucleate in a chiral nematic liquid crystal, which self-organizes into an extended branching pattern. It is known that branching events take place when the rounded tips of cholesteric fingers swell, become unstable, and split into two new cholesteric tips. The origin of this interfacial instability and the mechanisms that drive the large-scale spatial organization of these cholesteric patterns remain unclear. In this work, we investigate experimentally the spatial and temporal organization of thermally driven branching patterns in chiral nematic liquid crystal cells. We describe the observations through a mean-field model and find that chirality is responsible for the creation of fingers, regulates their interactions, and controls the tip-splitting process. Furthermore, we show that the complex dynamics of the cholesteric pattern behaves as a probabilistic process of branching and inhibition of chiral tips that drives the large-scale topological organization. Our theoretical findings are in good agreement with the experimental observations.

2.
Phys Rev E ; 105(5-1): 054701, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706248

RESUMEN

Systems with multistability are characterized by exhibiting complex nonlinear waves between equilibria. Experimentally, near the smectic-A to chiral nematic transition in a liquid crystal mixture cell with planar anchoring, we observe finger fronts emerge in the smectic-A phase when applying an electric field, a reorientation transition. Finger fronts propagate in the direction orthogonal to the anchoring. Colorimetry characterization allows us to describe the molecular reorientation transition and front dynamics. We reveal that the reorientation transition is of the first-order type and determine their critical points. The front speed is determined as a function of the applied voltage. Theoretically, based on a prototype model of liquid crystal transitions, we qualitatively describe the experimental observations. We have analytically determined the bifurcation diagram and the propagation speeds of finger fronts, finding a fair agreement with the experimental observations.

3.
Phys Rev Lett ; 127(12): 123901, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597105

RESUMEN

Modulation instability (MI) in the presence of noise typically leads to an irreversible and complete disintegration of a plane wave background. Here we report on experiments performed in a coherently driven nonlinear optical resonator that demonstrate nonlinear localization of dissipative MI: formation of persisting domains of MI-driven spatiotemporal chaos surrounded by a stable quasi-plane-wave background. The persisting localization ensues from a combination of bistability and complex spatiotemporal nonlinear dynamics that together permit a locally induced domain of MI to be pinned by a shallow modulation on the plane wave background. We further show that the localized domains of spatiotemporal chaos can be individually addressed-turned on and off at will-and we explore their transport behavior as the strength of the pinning is controlled. Our results reveal new fundamental dynamics at the interface of front dynamics and MI, and offer a route for tailored patterns of noiselike bursts of light.

4.
Phys Rev E ; 104(2): L022203, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34525661

RESUMEN

We consider a two-dimensional array of heterogeneous nonlocally coupled phase oscillators on a flat torus and study the bound states of two counter-rotating spiral chimeras, shortly two-core spiral chimeras, observed in this system. In contrast to other known spiral chimeras with motionless incoherent cores, the two-core spiral chimeras typically show a drift motion. Due to this drift, their incoherent cores become spatially modulated and develop specific fingerprint patterns of varying synchrony levels. In the continuum limit of infinitely many oscillators, the two-core spiral chimeras can be studied using the Ott-Antonsen equation. Numerical analysis of this equation allows us to reveal the stability region of different spiral chimeras, which we group into three main classes-symmetric, asymmetric, and meandering spiral chimeras.

5.
Chaos ; 30(11): 110401, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33261348

RESUMEN

This Focus Issue on instabilities and nonequilibrium structures includes invited contributions from leading researchers across many different fields. The issue was inspired in part by the "VII Instabilities and Nonequilibrium Structures 2019" conference that took place at the Pontifica Universidad Católica de Valparaiso, Chile in December 2019. The conference, which is devoted to nonlinear science, is one of the oldest conferences in South America (since December 1985). This session has an exceptional character since it coincides with the 80th anniversary of Professor Enrique Tirapegui. We take this opportunity to highlight Tirapegui's groundbreaking contributions in the field of random perturbations experienced by macroscopic systems and in the formation of spatiotemporal structures in such systems operating far from thermodynamic equilibrium. This issue addresses a cross-disciplinary area of research as can be witnessed by the diversity of systems considered from inert matter such as photonics, chemistry, and fluid dynamics, to biology.


Asunto(s)
Termodinámica , Chile
6.
Sci Rep ; 10(1): 19324, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168934

RESUMEN

Matter under different equilibrium conditions of pressure and temperature exhibits different states such as solid, liquid, gas, and plasma. Exotic states of matter, such as Bose-Einstein condensates, superfluidity, chiral magnets, superconductivity, and liquid crystalline blue phases are observed in thermodynamic equilibrium. Rather than being a result of an aggregation of matter, their emergence is due to a change of a topological state of the system. These topological states can persist out of thermodynamics equilibrium. Here we investigate topological states of matter in a system with injection and dissipation of energy by means of oscillatory forcing. In an experiment involving a liquid crystal cell under the influence of a low-frequency oscillatory electric field, we observe a transition from a non-vortex state to a state in which vortices persist, topological transition. Depending on the period and the type of the forcing, the vortices self-organise, forming square lattices, glassy states, and disordered vortex structures. The bifurcation diagram is characterised experimentally. A continuous topological transition is observed for the sawtooth and square forcings. The scenario changes dramatically for sinusoidal forcing where the topological transition is discontinuous, which is accompanied by serial transitions between square and glassy vortex lattices. Based on a stochastic amplitude equation, we recognise the origin of the transition as the balance between stochastic creation and deterministic annihilation of vortices. Numerical simulations show topological transitions and the emergence of square vortex lattice. Our results show that the matter maintained out of equilibrium by means of the temporal modulation of parameters can exhibit exotic states.

7.
Phys Rev E ; 101(6-1): 062704, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688617

RESUMEN

Electrically driven nematic liquid crystals layers are ideal contexts for studying the interactions of local topological defects, umbilical defects. In homogeneous samples the number of defects is expected to decrease inversely proportional to time as a result of defect-pair interaction law, so-called coarsening process. Experimentally, we characterize the coarsening dynamics in samples containing glass beads as spacers and show that the inclusion of such imperfections changes the exponent of the coarsening law. Moreover, we demonstrate that beads that are slightly deformed alter the surrounding molecular distribution and attract vortices of both topological charges, thus, presenting a mainly quadrupolar behavior. Theoretically, based on a model of vortices diluted in a dipolar medium, a 2/3 exponent is inferred, which is consistent with the experimental observations.

8.
Phys Rev E ; 101(5-1): 052209, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575288

RESUMEN

Nonequilibrium systems exhibit particle-type solutions. Oscillons are one of the best-known localized states of systems with time-dependent forcing or parametrically driven systems. We investigate the transition from nonradiative to radiative oscillons in the parametrically driven sine-Gordon model in two spatial dimensions. The bifurcation takes place when the strength of the forcing (frequency) increases (decreases) above a certain threshold. As a result of this transition, the oscillon emits radially symmetric evanescent waves. Numerically, we provide the phase diagram and show the supercritical nature of this transition. For small oscillations, based on the amplitude equation approach, the sine-Gordon equation with time-dependent forcing is transformed into the parametrically driven damped nonlinear Schrödinger model in two spatial dimensions. This amplitude equation exhibits a transition between nonradiative to radiative localized structures, consistently. Both models show quite good agreement.

9.
Nat Commun ; 11(1): 2400, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404882

RESUMEN

Driven non-linear resonators can display sharp resonances or even multistable behaviours amenable to induce strong enhancements of weak signals. Such enhancements can make use of the phenomenon of vibrational resonance, whereby a weak low-frequency signal applied to a bistable resonator can be amplified by driving the non-linear oscillator with another appropriately-adjusted non-resonant high-frequency field. Here we demonstrate experimentally and theoretically a significant resonant enhancement of a weak signal by use of a vibrational force, yet in a monostable system consisting of a driven nano-electromechanical nonlinear resonator. The oscillator is subjected to a strong quasi-resonant drive and to two additional tones: a weak signal at lower frequency and a non-resonant driving at an intermediate frequency. We analyse this phenomenon in terms of coherent nonlinear resonance manipulation. Our results illustrate a general mechanism which might have applications in the fields of microwave signal amplification or sensing for instance.

10.
Phys Rev E ; 101(4-1): 042212, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32422835

RESUMEN

Mobility properties of spatially localized structures arising from chaotic but deterministic forcing of the bistable Swift-Hohenberg equation are studied and compared with the corresponding results when the chaotic forcing is replaced by white noise. Short structures are shown to possess greater mobility, resulting in larger root-mean-square speeds but shorter displacements than longer structures. Averaged over realizations, the displacement of the structure is ballistic at short times but diffusive at larger times. Similar results hold in two spatial dimensions. The effects of chaotic forcing on the stability of these structures is also quantified. Shorter structures are found to be more fragile than longer ones, and their stability region can be displaced outside the pinning region for constant forcing. Outside the stability region the deterministic fluctuations lead either to the destruction of the structure or to its gradual growth.

11.
Sci Rep ; 9(1): 15096, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641144

RESUMEN

Coexistence of states is an indispensable feature in the observation of domain walls, interfaces, shock waves or fronts in macroscopic systems. The propagation of these nonlinear waves depends on the relative stability of the connected equilibria. In particular, one expects a stable equilibrium to invade an unstable one, such as occur in combustion, in the spread of permanent contagious diseases, or in the freezing of supercooled water. Here, we show that an unstable state generically can invade a locally stable one in the context of the pattern forming systems. The origin of this phenomenon is related to the lower energy unstable state invading the locally stable but higher energy state. Based on a one-dimensional model we reveal the necessary features to observe this phenomenon. This scenario is fulfilled in the case of a first order spatial instability. A photo-isomerization experiment of a dye-dopant nematic liquid crystal, allow us to observe the front propagation from an unstable state.

12.
Phys Rev E ; 99(6-1): 062226, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330663

RESUMEN

Driven dissipative many-body systems are described by differential equations for macroscopic variables which include fluctuations that account for ignored microscopic variables. Here, we investigate the effect of deterministic fluctuations, drawn from a system in a state of phase turbulence, on front dynamics. We show that despite these fluctuations a front may remain pinned, in contrast to fronts in systems with Gaussian white noise fluctuations, and explore the pinning-depinning transition. In the deterministic case, this transition is found to be robust but its location in parameter space is complex, generating a fractal-like structure. We describe this transition by deriving an equation for the front position, which takes the form of an overdamped system with a ratchet potential and chaotic forcing; this equation can, in turn, be transformed into a linear parametrically driven oscillator with a chaotically oscillating frequency. The resulting description provides an unambiguous characterization of the pinning-depinning transition in parameter space. A similar calculation for noise-driven front propagation shows that the pinning-depinning transition is washed out.

13.
Opt Lett ; 44(12): 2947-2950, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199352

RESUMEN

Optical vortices and lattices of these are attracting the attention of the scientific community because of their applications in various fields of optical processing, communications, enhanced imaging systems, and bio-inspired devices. Programmable optical vortices lattices with arbitrary distributions have been achieved using illuminated liquid crystals with photosensitive walls. Using an amplitude equation that describes these optical valves close to the Freédericksz transition allows us to characterize analytically the vortices and the lattices they form. The numerical simulations of the amplitude equation, analytical solutions, and experimental observations show good agreement.

14.
Opt Express ; 27(9): 12391-12398, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052779

RESUMEN

Driven optical systems can exhibit coexistence of equilibrium states. Traveling waves or fronts between different states present complex spatiotemporal dynamics. We investigate the mechanisms that govern the front spread. Based on a liquid crystal light valve experiment with optical feedback, we show that the front propagation does not pursue a minimization of free energy. Depending on the free propagation length in the optical feedback loop, the front speed exhibits a supercritical transition. Theoretically, from first principles, we use a model that takes it into account, characterizing the speed transition from a plateau to a growing regime. The theoretical and experimental results show quite fair agreement.

15.
Sci Rep ; 8(1): 12867, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150701

RESUMEN

Optical pattern formation is usually due either to the combination of diffraction and nonlinearity in a Kerr medium or to the temporal modulation of light in a photosensitive chemical reaction. Here, we show a different mechanism by which light spontaneously induces stripe domains between nematic states in a twisted nematic liquid crystal layer doped with azo-dyes. Thanks to the photoisomerization process of the dopants, light in the absorption band of the dopants creates spontaneous patterns without the need of temporal modulation, diffraction, Kerr or other optical nonlinearity, but based on the different scales for dopant transport processes and nematic order parameter, which identifies a genuine Turing mechanism for this instability. Theoretically, the emergence of the stripe patterns is described on the basis of a model for the dopant concentration coupled with the nematic order parameter.

16.
Entropy (Basel) ; 20(10)2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33265877

RESUMEN

Out-of-equilibrium systems exhibit complex spatiotemporal behaviors when they present a secondary bifurcation to an oscillatory instability. Here, we investigate the complex dynamics shown by a pulsing regime in an extended, one-dimensional semiconductor microcavity laser whose cavity is composed by integrated gain and saturable absorber media. This system is known to give rise experimentally and theoretically to extreme events characterized by rare and high amplitude optical pulses following the onset of spatiotemporal chaos. Based on a theoretical model, we reveal a dynamical behavior characterized by the chaotic alternation of phase and amplitude turbulence. The highest amplitude pulses, i.e., the extreme events, are observed in the phase turbulence zones. This chaotic alternation behavior between different turbulent regimes is at contrast to what is usually observed in a generic amplitude equation model such as the Ginzburg-Landau model. Hence, these regimes provide some insight into the poorly known properties of the complex spatiotemporal dynamics exhibited by secondary instabilities of an Andronov-Hopf bifurcation.

17.
Chaos ; 27(11): 114312, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195301

RESUMEN

Time-delayed feedback plays an important role in the dynamics of spatially extended systems. In this contribution, we consider the generic Lugiato-Lefever model with delay feedback that describes Kerr optical frequency comb in all fiber cavities. We show that the delay feedback strongly impacts the spatiotemporal dynamical behavior resulting from modulational instability by (i) reducing the threshold associated with modulational instability and by (ii) decreasing the critical frequency at the onset of this instability. We show that for moderate input intensities it is possible to generate drifting cavity solitons with an asymmetric radiation emitted from the soliton tails. Finally, we characterize the formation of rogue waves induced by the delay feedback.

18.
Phys Rev Lett ; 119(23): 234101, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29286702

RESUMEN

Stochastic resonance is a general phenomenon usually observed in one-dimensional, amplitude modulated, bistable systems. We show experimentally the emergence of phase stochastic resonance in the bidimensional response of a forced nanoelectromechanical membrane by evidencing the enhancement of a weak phase modulated signal thanks to the addition of phase noise. Based on a general forced Duffing oscillator model, we demonstrate experimentally and theoretically that phase noise acts multiplicatively, inducing important physical consequences. These results may open interesting prospects for phase noise metrology or coherent signal transmission applications in nanomechanical oscillators. Moreover, our approach, due to its general character, may apply to various systems.

19.
Appl Opt ; 55(28): 7803-7809, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27828015

RESUMEN

Programmable diffraction gratings are relevant in optical data processing. One of the adequate device candidates is the in-plane switching liquid crystal cell. This technology, developed initially for liquid crystal screens, has also been studied with two inter-digital electrodes as a diffraction grating. Recently, the apparition of programmable zigzag wall lattices in an in-plane switching configuration has been reported. Here, we report a theoretical and experimental study of programmable diffraction grating in an in-plane switching cell.

20.
Sci Rep ; 6: 33703, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650430

RESUMEN

Desertification due to climate change and increasing drought periods is a worldwide problem for both ecology and economy. Our ability to understand how vegetation manages to survive and propagate through arid and semiarid ecosystems may be useful in the development of future strategies to prevent desertification, preserve flora-and fauna within-or even make use of scarce resources soils. In this paper, we study a robust phenomena observed in semi-arid ecosystems, by which localized vegetation patches split in a process called self-replication. Localized patches of vegetation are visible in nature at various spatial scales. Even though they have been described in literature, their growth mechanisms remain largely unexplored. Here, we develop an innovative statistical analysis based on real field observations to show that patches may exhibit deformation and splitting. This growth mechanism is opposite to the desertification since it allows to repopulate territories devoid of vegetation. We investigate these aspects by characterizing quantitatively, with a simple mathematical model, a new class of instabilities that lead to the self-replication phenomenon observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...