Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(4): 1080-1095, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310353

RESUMEN

Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.


Asunto(s)
MicroARNs , Tauopatías , Ratones , Humanos , Animales , Anciano , Proteínas tau/genética , Proteínas tau/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Tauopatías/genética , Tauopatías/terapia , Tauopatías/metabolismo , Neuronas/metabolismo , Fenotipo , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
Front Bioeng Biotechnol ; 10: 951384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277399

RESUMEN

Tau is a microtubule-associated protein predominantly expressed in neurons, which participates in microtubule polymerization and axonal transport. Abnormal tau metabolism leads to neurodegenerative diseases named tauopathies, such as Alzheimer's disease and frontotemporal dementia. The alternative splicing of exon 10 (E10) in the primary transcript produces tau protein isoforms with three (3R) or four (4R) microtubule binding repeats, which are found in equal amounts in the normal adult human brain. Several tauopathies are associated with abnormal E10 alternative splicing, leading to an imbalance between 3R and 4R isoforms, which underlies disease. Correction of such imbalance represents a potential disease-modifying therapy for those tauopathies. We have previously optimized a trans-splicing RNA reprogramming strategy to modulate the 3R:4R tau content in a mouse model of tauopathy related to tau mis-splicing (htau mice), and showed that local modulation of E10 inclusion in the prefrontal cortex prevents cognitive decline, neuronal firing impairments and hyperphosphorylated tau accumulation. Furthermore, local shifting of 3R-4R tau into the striatum of htau mice prevented motor coordination deficits. However, a major bottleneck of our previous work is that local splicing regulation was performed in young mice, before the onset of pathological phenotypes. Here we tested whether regulation of tau E10 splicing could rescue tau pathology phenotypes in htau mice, after the onset of cognitive and motor impairments, comparable to early stages of human tauopathies. To determine phenotypic time course and affected brain nuclei, we assessed htau mice using behavioural tests and microPET FDG imaging over time, similarly to diagnosis methods used in patients. Based on these analyses, we performed local delivery of pre-trans splicing molecules to regulate E10 inclusion either into the medial prefrontal cortex (mPFC) or the striatum at 6-month-old once behavioral phenotypes and metabolic changes were detected. Tau isoforms modulation into the mPFC restored cognitive performance in mice that previously showed mild to severe memory impairment while motor coordination deficit was rescued after striatal injection of trans-splicing molecules. Our data suggest that tau regulation could recover pathological phenotypes early after phenotypic onset, raising promising perspectives for the use of RNA based therapies in tauopathies related to MAPT abnormal splicing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...