Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 19(4): 1053-1082, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212641

RESUMEN

The pathogenesis of cancer and cardiovascular diseases is subjected to spatiotemporal regulation by the tissue microenvironment. Multiplex visualization of the microenvironmental components, including immune cells, vasculature and tissue hypoxia, provides critical information underlying the disease progression and therapy resistance, which is often limited by imaging depth and resolution in large-volume tissues. To this end, light sheet fluorescence microscopy, following tissue clarification and immunostaining, may generate three-dimensional high-resolution images at a whole-organ level. Here we provide a detailed description of light sheet fluorescence microscopy imaging analysis of immune cell composition, vascularization, tissue perfusion and hypoxia in mouse normal brains and hearts, as well as brain tumors. We describe a procedure for visualizing tissue vascularization, perfusion and hypoxia with a transgenic vascular labeling system. We provide the procedures for tissue collection, tissue semi-clearing and immunostaining. We further describe standard methods for analyzing tissue immunity and vascularity. We anticipate that this method will facilitate the spatial illustration of structure and function of the tissue microenvironmental components in cancer and cardiovascular diseases. The procedure requires 1-2 weeks and can be performed by users with expertise in general molecular biology.


Asunto(s)
Neoplasias Encefálicas , Enfermedades Cardiovasculares , Animales , Ratones , Microscopía Fluorescente/métodos , Imagenología Tridimensional/métodos , Análisis Espacial , Hipoxia , Microambiente Tumoral
2.
Trends Mol Med ; 30(2): 107-109, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272715
3.
Trends Mol Med ; 30(2): 126-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040601

RESUMEN

Cancer immunity is subject to spatiotemporal regulation by leukocyte interaction with the tumor microenvironment. Growing evidence suggests an emerging role for the vasculature in tumor immune evasion and immunotherapy resistance. Beyond the conventional functions of the tumor vasculature, such as providing oxygen and nutrients to support tumor progression, we propose multiplex mechanisms for vascular regulation of tumor immunity: The immunosuppressive vascular niche locoregionally educates circulation-derived immune cells by angiocrines, aberrant endothelial metabolism induces T cell exclusion and inactivation, and topologically and biochemically abnormal vascularity forms a pathophysiological barrier that hampers lymphocyte infiltration. We postulate that genetic and metabolic reprogramming of endothelial cells may rewire the immunosuppressive vascular microenvironment to overcome immunotherapy resistance, serving as a next-generation vascular targeting strategy for cancer treatment.


Asunto(s)
Células Endoteliales , Neoplasias , Humanos , Células Endoteliales/metabolismo , Inmunoterapia , Neoplasias/metabolismo , Linfocitos T , Escape del Tumor , Microambiente Tumoral
4.
Cancer Res ; 83(20): 3442-3461, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37470810

RESUMEN

Although external beam radiotherapy (xRT) is commonly used to treat central nervous system (CNS) tumors in patients of all ages, young children treated with xRT frequently experience life-altering and dose-limiting neurocognitive impairment (NI) while adults do not. The lack of understanding of mechanisms responsible for these differences has impeded the development of neuroprotective treatments. Using a newly developed mouse model of xRT-induced NI, we found that neurocognitive function is impaired by ionizing radiation in a dose- and age-dependent manner, with the youngest animals being most affected. Histologic analysis revealed xRT-driven neuronal degeneration and cell death in neurogenic brain regions in young animals but not adults. BH3 profiling showed that neural stem and progenitor cells, neurons, and astrocytes in young mice are highly primed for apoptosis, rendering them hypersensitive to genotoxic damage. Analysis of single-cell RNA sequencing data revealed that neural cell vulnerability stems from heightened expression of proapoptotic genes including BAX, which is associated with developmental and mitogenic signaling by MYC. xRT induced apoptosis in primed neural cells by triggering a p53- and PUMA-initiated, proapoptotic feedback loop requiring cleavage of BID and culminating in BAX oligomerization and caspase activation. Notably, loss of BAX protected against apoptosis induced by proapoptotic signaling in vitro and prevented xRT-induced apoptosis in neural cells in vivo as well as neurocognitive sequelae. On the basis of these findings, preventing xRT-induced apoptosis specifically in immature neural cells by blocking BAX, BIM, or BID via direct or upstream mechanisms is expected to ameliorate NI in pediatric patients with CNS tumor. SIGNIFICANCE: Age- and differentiation-dependent apoptotic priming plays a pivotal role in driving radiotherapy-induced neurocognitive impairment and can be targeted for neuroprotection in pediatric patients.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Animales , Niño , Preescolar , Humanos , Ratones , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Muerte Celular , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
5.
Acta Neuropathol Commun ; 11(1): 8, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635771

RESUMEN

We show that Polycomb Repressive Complex-2 (PRC2) components EED and EZH2 maintain neural identity in cerebellar granule neuron progenitors (CGNPs) and SHH-driven medulloblastoma, a cancer of CGNPs. Proliferating CGNPs and medulloblastoma cells inherit neural fate commitment through epigenetic mechanisms. The PRC2 is an epigenetic regulator that has been proposed as a therapeutic target in medulloblastoma. To define PRC2 function in cerebellar development and medulloblastoma, we conditionally deleted PRC2 components Eed or Ezh2 in CGNPs and analyzed medulloblastomas induced in Eed-deleted and Ezh2-deleted CGNPs by expressing SmoM2, an oncogenic allele of Smo. Eed deletion destabilized the PRC2, depleting EED and EZH2 proteins, while Ezh2 deletion did not deplete EED. Eed-deleted cerebella were hypoplastic, with reduced proliferation, increased apoptosis, and inappropriate muscle-like differentiation. Ezh2-deleted cerebella showed similar, milder phenotypes, with fewer muscle-like cells and without reduced growth. Eed-deleted and Ezh2-deleted medulloblastomas both demonstrated myoid differentiation and progressed more rapidly than PRC2-intact controls. The PRC2 thus maintains neural commitment in CGNPs and medulloblastoma, but is not required for SHH medulloblastoma progression. Our data define a role for the PRC2 in preventing inappropriate, non-neural fates during postnatal neurogenesis, and caution that targeting the PRC2 in SHH medulloblastoma may not produce durable therapeutic effects.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proliferación Celular , Cerebelo/metabolismo , Diferenciación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo
6.
Cell Death Dis ; 12(12): 1133, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873168

RESUMEN

Neurologic disorders often disproportionately affect specific brain regions, and different apoptotic mechanisms may contribute to white matter pathology in leukodystrophies or gray matter pathology in poliodystrophies. We previously showed that neural progenitors that generate cerebellar gray matter depend on the anti-apoptotic protein BCL-xL. Conditional deletion of Bcl-xL in these progenitors produces spontaneous apoptosis and cerebellar hypoplasia, while similar conditional deletion of Mcl-1 produces no phenotype. Here we show that, in contrast, postnatal oligodendrocytes depend on MCL-1. We found that brain-wide Mcl-1 deletion caused apoptosis specifically in mature oligodendrocytes while sparing astrocytes and oligodendrocyte precursors, resulting in impaired myelination and progressive white matter degeneration. Disabling apoptosis through co-deletion of Bax or Bak rescued white matter degeneration, implicating the intrinsic apoptotic pathway in Mcl-1-dependence. Bax and Bak co-deletions rescued different aspects of the Mcl-1-deleted phenotype, demonstrating their discrete roles in white matter stability. MCL-1 protein abundance was reduced in eif2b5-mutant mouse model of the leukodystrophy vanishing white matter disease (VWMD), suggesting the potential for MCL-1 deficiency to contribute to clinical neurologic disease. Our data show that oligodendrocytes require MCL-1 to suppress apoptosis, implicate MCL-1 deficiency in white matter pathology, and suggest apoptosis inhibition as a leukodystrophy therapy.


Asunto(s)
Enfermedades Desmielinizantes , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Sustancia Blanca , Animales , Apoptosis/genética , Enfermedades Desmielinizantes/patología , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Oligodendroglía/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sustancia Blanca/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
7.
Commun Biol ; 4(1): 616, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021242

RESUMEN

It is unclear why medulloblastoma patients receiving similar treatments experience different outcomes. Transcriptomic profiling identified subgroups with different prognoses, but in each subgroup, individuals remain at risk of incurable recurrence. To investigate why similar-appearing tumors produce variable outcomes, we analyzed medulloblastomas triggered in transgenic mice by a common driver mutation expressed at different points in brain development. We genetically engineered mice to express oncogenic SmoM2, starting in multipotent glio-neuronal stem cells, or committed neural progenitors. Both groups developed medulloblastomas with similar transcriptomic profiles. We compared medulloblastoma progression, radiosensitivity, and cellular heterogeneity, determined by single-cell transcriptomic analysis (scRNA-seq). Stem cell-triggered medulloblastomas progressed faster, contained more OLIG2-expressing stem-like cells, and consistently showed radioresistance. In contrast, progenitor-triggered MBs progressed slower, down-regulated stem-like cells and were curable with radiation. Progenitor-triggered medulloblastomas also contained more diverse stromal populations, with more Ccr2+ macrophages and fewer Igf1+ microglia, indicating that developmental events affected the subsequent tumor microenvironment. Reduced mTORC1 activity in M-Smo tumors suggests that differential Igf1 contributed to differences in phenotype. Developmental events in tumorigenesis that were obscure in transcriptomic profiles thus remained cryptic determinants of tumor composition and outcome. Precise understanding of medulloblastoma pathogenesis and prognosis requires supplementing transcriptomic/methylomic studies with analyses that resolve cellular heterogeneity.


Asunto(s)
Linaje de la Célula , Neoplasias Cerebelosas/patología , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Meduloblastoma/patología , Tolerancia a Radiación/genética , Células Madre/patología , Transcriptoma/efectos de la radiación , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/radioterapia , Heterogeneidad Genética , Humanos , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual , Células Madre/efectos de la radiación , Microambiente Tumoral
8.
Cell Death Differ ; 28(5): 1579-1592, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33293647

RESUMEN

The tendency of brain cells to undergo apoptosis in response to exogenous events varies across neural development, with apoptotic threshold dependent on proliferation state. Proliferative neural progenitors show a low threshold for apoptosis, while terminally differentiated neurons are relatively refractory. To define the mechanisms linking proliferation and apoptotic threshold, we examined the effect of conditionally deleting Bcl2l1, the gene that codes the antiapoptotic protein BCL-xL, in cerebellar granule neuron progenitors (CGNPs), and of co-deleting Bcl2l1 homologs, antiapoptotic Mcl-1, or pro-apoptotic Bax. We found that cerebella in conditional Bcl2l1-deleted (Bcl-xLcKO) mice were severely hypoplastic due to the increased apoptosis of CGNPs and their differentiated progeny, the cerebellar granule neurons (CGNs). Apoptosis was highest as Bcl-xLcKO CGNPs exited the cell cycle to initiate differentiation, with proliferating Bcl-xLcKO CGNPs relatively less affected. Despite the overall reduction in cerebellar growth, SHH-dependent proliferation was prolonged in Bcl-xLcKO mice, as more CGNPs remained proliferative in the second postnatal week. Co-deletion of Bax rescued the Bcl-xLcKO phenotype, while co-deletion of Mcl-1 enhanced the phenotype. These findings show that CGNPs require BCL-xL to regulate BAX-dependent apoptosis, and that this role can be partially compensated by MCL-1. Our data further show that BCL-xL expression regulates MCL-1 abundance in CGNPs, and suggest that excessive MCL-1 in Bcl-xLcKO mice prolongs CGNP proliferation by binding SUFU, resulting in increased SHH pathway activation. Accordingly, we propose that BCL-xL and MCL-1 interact with each other and with developmental mechanisms that regulate proliferation, to adjust the apoptotic threshold as CGNPs progress through postnatal neurogenesis to CGNs.


Asunto(s)
Neoplasias Cerebelosas/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Proliferación Celular , Neoplasias Cerebelosas/patología , Humanos , Ratones , Neurogénesis , Transducción de Señal
9.
Nat Commun ; 10(1): 3004, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285436

RESUMEN

Identity determining transcription factors (TFs), or core regulatory (CR) TFs, are governed by cell-type specific super enhancers (SEs). Drugs to selectively inhibit CR circuitry are of high interest for cancer treatment. In alveolar rhabdomyosarcoma, PAX3-FOXO1 activates SEs to induce the expression of other CR TFs, providing a model system for studying cancer cell addiction to CR transcription. Using chemical genetics, the systematic screening of chemical matter for a biological outcome, here we report on a screen for epigenetic chemical probes able to distinguish between SE-driven transcription and constitutive transcription. We find that chemical probes along the acetylation-axis, and not the methylation-axis, selectively disrupt CR transcription. Additionally, we find that histone deacetylases (HDACs) are essential for CR TF transcription. We further dissect the contribution of HDAC isoforms using selective inhibitors, including the newly developed selective HDAC3 inhibitor LW3. We show HDAC1/2/3 are the co-essential isoforms that when co-inhibited halt CR transcription, making CR TF sites hyper-accessible and disrupting chromatin looping.


Asunto(s)
Elementos de Facilitación Genéticos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Rabdomiosarcoma/genética , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Humanos , Simulación de Dinámica Molecular , Sondas Moleculares/química , Sondas Moleculares/farmacología , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Rabdomiosarcoma/patología , Análisis de Secuencia de ARN , Transcripción Genética/efectos de los fármacos
10.
Cancer Discov ; 7(8): 884-899, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28446439

RESUMEN

Alveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and adolescent young adults, driven primarily by the chimeric transcription factor PAX3-FOXO1. The mechanisms by which PAX3-FOXO1 dysregulates chromatin are unknown. We find PAX3-FOXO1 reprograms the cis-regulatory landscape by inducing de novo super enhancers. PAX3-FOXO1 uses super enhancers to set up autoregulatory loops in collaboration with the master transcription factors MYOG, MYOD, and MYCN. This myogenic super enhancer circuitry is consistent across cell lines and primary tumors. Cells harboring the fusion gene are selectively sensitive to small-molecule inhibition of protein targets induced by, or bound to, PAX3-FOXO1-occupied super enhancers. Furthermore, PAX3-FOXO1 recruits and requires the BET bromodomain protein BRD4 to function at super enhancers, resulting in a complete dependence on BRD4 and a significant susceptibility to BRD inhibition. These results yield insights into the epigenetic functions of PAX3-FOXO1 and reveal a specific vulnerability that can be exploited for precision therapy.Significance: PAX3-FOXO1 drives pediatric fusion-positive rhabdomyosarcoma, and its chromatin-level functions are critical to understanding its oncogenic activity. We find that PAX3-FOXO1 establishes a myoblastic super enhancer landscape and creates a profound subtype-unique dependence on BET bromodomains, the inhibition of which ablates PAX3-FOXO1 function, providing a mechanistic rationale for exploring BET inhibitors for patients bearing PAX-fusion rhabdomyosarcoma. Cancer Discov; 7(8); 884-99. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 783.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma Alveolar/tratamiento farmacológico , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cromatina/genética , Elementos de Facilitación Genéticos/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Femenino , Humanos , Masculino , Ratones , Proteína MioD/genética , Miogenina/genética , Proteína Proto-Oncogénica N-Myc/genética , Unión Proteica/genética , Dominios Proteicos/genética , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/patología , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA