Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Phys Chem A ; 125(28): 6228-6237, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34240869

RESUMEN

A systematic analysis of the torsional profiles of 55 unique oligomers composed of two to four thiophene and/or furan rings (n = 2 to 4) has been conducted using three density functional theory (DFT) methods along with MP2 and three different coupled-cluster methods. Two planar or quasi-planar minima were identified for each n = 2 oligomer system. In every case, the torsional angle (τ) between the heteroatoms about the carbon-carbon bond connecting the two rings is at or near 180° for the global minimum and 0° for the local minimum, referred to as anti and syn conformations, respectively. These oligomers have rotational barrier heights ranging from ca. 2 kcal mol-1 for 2,2'-bithiophene to 4 kcal mol-1 for 2,2'-bifuran, based on electronic energies computed near the CCSD(T) complete basis set (CBS) limit. The corresponding rotational barrier for the heterogeneous 2-(2-thienyl)furan counterpart falls approximately halfway between those values. The energy differences between the minima are approximately 2 and 0.4 kcal mol-1 for the homogeneous 2,2'-bifuran and 2,2'-bithiophene, respectively, whereas the energy difference between the planar local and global minima (at τ = 0 and 180°, respectively) is only 0.3 kcal mol-1 for 2-(2-thienyl)furan. Extending these three oligomers by adding one or two additional thiophene and/or furan rings resulted in only minor changes to the torsional profiles when rotating around the same carbon-carbon bond as the two-ring profiles. Relative energy differences between the syn and anti conformations were changed by no more than 0.4 kcal mol-1 for the corresponding n = 3 and 4 oligomers, while the rotational barrier height increased by no more than 0.8 kcal mol-1.

3.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1255-1263, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28344128

RESUMEN

As the obesity epidemic worsens, the prevalence of maternal obesity is expected to rise. Both high-fat and high-sucrose diets are known to promote maternal obesity and several studies have elucidated the molecular influence of high-fat feeding on female reproduction. However, to date, the molecular impact of a high-sucrose diet on maternal obesity remains to be investigated. Using our previously reported Drosophila high-sucrose maternal obesity model, we sought to determine how excess dietary sucrose impacted the ovary. High-sucrose diet (HSD) fed adult females developed systemic insulin resistance and exhibited an ovarian phenotype characterized by excess accumulation of lipids and cholesterol in the ovary, decreased ovary size, and impaired egg maturation. We also observed decreased expression of antioxidant genes and increased protein carbonylation in the ovaries of HSD females. HSD females laid fewer eggs; however, the overall survival of offspring was unchanged relative to lean control females. Ovaries of HSD females had increased mitochondrial DNA copy number and decreased expression of key mitochondrial regulators, suggestive of an ineffective compensatory response to mitochondrial dysfunction. Mitochondrial alterations were also observed in male offspring of obese females. This study demonstrates that high-sucrose-induced maternal obesity promotes insulin resistance, while disrupting ovarian metabolism and function.


Asunto(s)
Carbohidratos de la Dieta/efectos adversos , Obesidad/metabolismo , Ovario/metabolismo , Sacarosa/efectos adversos , Animales , Carbohidratos de la Dieta/farmacología , Drosophila melanogaster , Femenino , Fertilidad/efectos de los fármacos , Obesidad/inducido químicamente , Obesidad/patología , Ovario/patología , Sacarosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA