Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672657

RESUMEN

The identification of somatic RB1 variation is crucial to confirm the heritability of retinoblastoma. We and others have previously shown that, when tumour DNA is unavailable, cell-free DNA (cfDNA) derived from aqueous humour (AH) can be used to identify somatic RB1 pathogenic variation. Here we report RB1 pathogenic variant detection, as well as cfDNA concentration in an extended cohort of 75 AH samples from 68 patients. We show cfDNA concentration is highly variable and significantly correlated with the collection point of the AH. Cell-free DNA concentrations above 5 pg/µL enabled the detection of 93% of known or expected RB1 pathogenic variants. In AH samples collected during intravitreal chemotherapy treatment (Tx), the yield of cfDNA above 5 pg/µL and subsequent variant detection was low (≤46%). However, AH collected by an anterior chamber tap after one to three cycles of primary chemotherapy (Dx1+) enabled the detection of 75% of expected pathogenic variants. Further limiting our analysis to Dx1+ samples taken after ≤2 cycles (Dx ≤ 2) provided measurable levels of cfDNA in all cases, and a subsequent variant detection rate of 95%. Early AH sampling is therefore likely to be important in maximising cfDNA concentration and the subsequent detection of somatic RB1 pathogenic variants in retinoblastoma patients undergoing conservative treatment.

2.
Eur J Hum Genet ; 31(3): 353-359, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36207621

RESUMEN

Nystagmus (involuntary, rhythmical eye movements) can arise due to sensory eye defects, in association with neurological disorders or as an isolated condition. We identified a family with early onset nystagmus and additional neurological features carrying a partial duplication of FGF14, a gene associated with spinocerebellar ataxia type 27 (SCA27) and episodic ataxia. Detailed eye movement analysis revealed oculomotor anomalies strikingly similar to those reported in a previously described four-generation family with early onset nystagmus and linkage to a region on chromosome 13q31.3-q33.1 (NYS4). Since FGF14 lies within NYS4, we revisited the original pedigree using whole genome sequencing, identifying a 161 kb heterozygous deletion disrupting FGF14 and ITGBL1 in the affected individuals, suggesting an FGF14-related condition. Therefore, our study reveals the genetic variant underlying NYS4, expands the spectrum of pathogenic FGF14 variants, and highlights the importance of screening FGF14 in apparently isolated early onset nystagmus.


Asunto(s)
Nistagmo Patológico , Degeneraciones Espinocerebelosas , Humanos , Ataxia/genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Integrina beta1/genética , Linaje , Degeneraciones Espinocerebelosas/genética
3.
Cells ; 11(7)2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35406691

RESUMEN

Periodontal ligament stem cells (PDLCs) can be used as a valuable source in cell therapies to regenerate bone tissue. However, the potential therapeutic outcomes are unpredictable due to PDLCs' heterogeneity regarding the capacity for osteoblast differentiation and mineral nodules production. Here, we identify epigenetic (DNA (hydroxy)methylation), chromatin (ATAC-seq) and transcriptional (RNA-seq) differences between PDLCs presenting with low (l) and high (h) osteogenic potential. The primary cell populations were investigated at basal state (cultured in DMEM) and after 10 days of osteogenic stimulation (OM). At a basal state, the expression of transcription factors (TFs) and the presence of gene regulatory regions related to osteogenesis were detected in h-PDLCs in contrast to neuronal differentiation prevalent in l-PDLCs. These differences were also observed under stimulated conditions, with genes and biological processes associated with osteoblast phenotype activated more in h-PDLCs. Importantly, even after the induction, l-PDLCs showed hypermethylation and low expression of genes related to bone development. Furthermore, the analysis of TFs motifs combined with TFs expression suggested the relevance of SP1, SP7 and DLX4 regulation in h-PDLCs, while motifs for SIX and OLIG2 TFs were uniquely enriched in l-PDLCs. Additional analysis including a second l-PDLC population indicated that the high expression of OCT4, SIX3 and PPARG TFs could be predictive of low osteogenic commitment. In summary, several biological processes related to osteoblast commitment were activated in h-PDLCs from the onset, while l-PDLCs showed delay in the activation of the osteoblastic program, restricted by the persistent methylation of gene related to bone development. These processes are pre-determined by distinguishable epigenetic and transcriptional patterns, the recognition of which could help in selection of PDLCs with pre-osteoblastic phenotype.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Células Cultivadas , Cromatina/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Metilación , Osteogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Cancer Lett ; 501: 172-186, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33359448

RESUMEN

The DNA demethylating agent 5-aza-2'-deoxycytidine (DAC, decitabine) has anti-cancer therapeutic potential, but its clinical efficacy is hindered by DNA damage-related side effects and its use in solid tumours is debated. Here we describe how paracetamol augments the effects of DAC on cancer cell proliferation and differentiation, without enhancing DNA damage. Firstly, DAC specifically upregulates cyclooxygenase-2-prostaglandin E2 pathway, inadvertently providing cancer cells with survival potential, while the addition of paracetamol offsets this effect. Secondly, in the presence of paracetamol, DAC treatment leads to glutathione depletion and finally to accumulation of ROS and/or mitochondrial superoxide, both of which have the potential to restrict tumour growth. The benefits of combined treatment are demonstrated here in head and neck squamous cell carcinoma (HNSCC) and acute myeloid leukaemia cell lines, further corroborated in a HNSCC xenograft mouse model and through mining of publicly available DAC and paracetamol responses. The sensitizing effect of paracetamol supplementation is specific to DAC but not its analogue 5-azacitidine. In summary, the addition of paracetamol could allow for DAC dose reduction, widening its clinical usability and providing a strong rationale for consideration in cancer therapy.


Asunto(s)
Acetaminofén/administración & dosificación , Antimetabolitos Antineoplásicos/administración & dosificación , Decitabina/administración & dosificación , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Leucemia Mieloide/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Acetaminofén/farmacología , Animales , Antimetabolitos Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Decitabina/farmacología , Sinergismo Farmacológico , Células HL-60 , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Leucemia Mieloide/metabolismo , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Superóxidos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Clin Med ; 9(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143217

RESUMEN

Retinoblastoma, the most common childhood eye cancer, presents in two forms: heritable or sporadic. Heritable retinoblastoma is caused by a germline mutation in the RB1 gene. Early diagnosis of children at risk of inheriting an RB1 mutation is crucial to achieve optimal clinical outcome. Currently, the majority of genetic testing is performed on newborns, which has multiple disadvantages for both families and the healthcare system. We have developed a non-invasive prenatal diagnosis (NIPD) service for retinoblastoma, available from 8 weeks' gestation, which uses a combination of massively parallel sequencing (MPS) techniques, dependent on the inheritance model. Detection of paternal or suspected de novo RB1 variants is achieved through amplicon-based MPS. NIPD of a fetus at risk of maternal inheritance is performed using capture-based targeted sequencing and relative haplotype dosage analysis. In addition, we show proof of principle of how capture-based sequencing can be used for de novo variants unsuitable for amplicon-based testing. In total, we report the NIPD of 15 pregnancies, results of which show 100% concordance with all postnatal testing performed at the time of publication (n = 12) with remaining pregnancies ongoing. NIPD of retinoblastoma therefore offers a viable alternative to newborn genetic testing.

6.
J Mol Diagn ; 22(9): 1151-1161, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32553884

RESUMEN

A relative haplotype dosage (RHDO)-based method was developed and implemented into routine clinical practice for noninvasive prenatal diagnosis (NIPD) of multiple single-gene disorders: spinal muscular atrophy, Duchenne and Becker muscular dystrophies, and cystic fibrosis. This article describes the experiences of the first 152 pregnancies to have NIPD by RHDO as part of a routine clinical service. Provision of results within a clinically useful time frame (mean, 11 calendar days) was shown to be possible, with a very low failure rate (4%), none being due to a technical failure. Where follow-up confirmatory testing was performed for audit purposes, 100% concordance was seen with the NIPD result, and no discrepancies have been reported. The robust performance of the assay, together with high sensitivity and specificity, demonstrates that NIPD by RHDO is feasible for use in a clinical setting.


Asunto(s)
Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Enfermedades Fetales/diagnóstico , Enfermedades Fetales/genética , Haplotipos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Pruebas Prenatales no Invasivas/métodos , Diagnóstico Prenatal/métodos , Atrofias Musculares Espinales de la Infancia/diagnóstico , Atrofias Musculares Espinales de la Infancia/genética , Ácidos Nucleicos Libres de Células/genética , Pruebas Diagnósticas de Rutina/métodos , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Embarazo , Estudios Retrospectivos , Sensibilidad y Especificidad
7.
J Pineal Res ; 69(3): e12673, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32533862

RESUMEN

The website and database https://snengs.nichd.nih.gov provides RNA sequencing data from multi-species analysis of the pineal glands from zebrafish (Danio rerio), chicken (White Leghorn), rat (Rattus novegicus), mouse (Mus musculus), rhesus macaque (Macaca mulatta), and human (Homo sapiens); in most cases, retinal data are also included along with results of the analysis of a mixture of RNA from tissues. Studies cover day and night conditions; in addition, a time series over multiple hours, a developmental time series and pharmacological experiments on rats are included. The data have been uniformly re-processed using the latest methods and assemblies to allow for comparisons between experiments and to reduce processing differences. The website presents search functionality, graphical representations, Excel tables, and track hubs of all data for detailed visualization in the UCSC Genome Browser. As more data are collected from investigators and improved genomes become available in the future, the website will be updated. This database is in the public domain and elements can be reproduced by citing the URL and this report. This effort makes the results of 21st century transcriptome profiling widely available in a user-friendly format that is expected to broadly influence pineal research.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica , Internet , Glándula Pineal/metabolismo , Retina/metabolismo , Animales , Pollos , Humanos , Macaca mulatta , Ratones , Ratas , Pez Cebra
8.
Am J Hum Genet ; 105(3): 640-657, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402090

RESUMEN

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.


Asunto(s)
Encéfalo/anomalías , Anomalías del Ojo/genética , Dedos/anomalías , Mutación Missense , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Proteínas con Repetición de beta-Transducina/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino
9.
Br J Ophthalmol ; 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30745306

RESUMEN

Retinoblastoma is the most common eye malignancy in childhood caused by mutations in the RB1 gene. Both alleles of the RB1 gene must be mutated for tumour development. The initial RB1 mutation may be constitutional germline or somatic (originating in one retinal cell only). Distinguishing between these alternative mechanisms is crucial, with wider implications for management of the patient and family members. Bilateral retinoblastoma is nearly always due to a constitutional mutation; however, approximately 15% of unilateral cases also carry a germline mutation, and identifying these cases is important. This can be achieved by identifying both mutation types in tumour tissue and excluding their presence in blood. Modern eye-saving chemotherapy treatment (systemic, intra-arterial and intravitreal) has resulted in fewer enucleations. As a result, tumour tissue required to identify sporadic RB1 mutation(s) is not always available. Modern intravitreal chemotherapeutic techniques for retinoblastoma involve aspiration of aqueous humour (AH), providing a novel sample source for analysis. By analysing cell-free DNA present in the AH fluid of eyes affected with retinoblastoma, we have developed a screening test capable of detecting somatic RB1 mutations that is comparable to current tests on enucleated tumour tissue. The results obtained with fluid from enucleated eyes were concordant with tumour tissue in all 10 cases analysed. In addition, AH analysis from two patients undergoing intravitreal chemotherapy successfully identified somatic variants in both cases. Our findings suggest that AH fluid is a promising source of tumour-derived DNA in retinoblastoma for analysis.

10.
Endocrinology ; 159(3): 1469-1478, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390136

RESUMEN

Growth plate chondrocytes undergo sequential differentiation to form the resting zone, the proliferative zone (PZ), and the hypertrophic zone (HZ). The important role of microRNAs (miRNAs) in the growth plate was previously revealed by cartilage-specific ablation of Dicer, an enzyme essential for biogenesis of many miRNAs. To identify specific miRNAs that regulate differentiation of PZ chondrocytes to HZ chondrocytes, we microdissected individual growth plate zones from juvenile rats and performed miRNA profiling using a solution hybridization method and miRNA sequencing. Thirty-four miRNAs were differentially expressed between the PZ and the HZ, and we hypothesized that some of the miRNAs that are preferentially expressed in the PZ may promote proliferation and inhibit hypertrophic differentiation. Consistent with this hypothesis, transfection of inhibitors for four of these miRNAs (mir-369-3p, mir-374-5p, mir-379-5p, and mir-503-5p) decreased proliferation in primary epiphyseal chondrocytes. The inhibitors for three of these miRNAs (mir-374-5p, mir-379-5p, and mir-503-5p) also increased expression of multiple genes that are associated with chondrocyte hypertrophic differentiation. We next hypothesized that preferential expression of these miRNAs in the PZ is driven by the parathyroid hormone-related protein (PTHrP) concentration gradient across the growth plate. Consistent with this hypothesis, treatment of primary chondrocytes with a parathyroid hormone (PTH)/PTHrP receptor agonist, PTH1-34, increased expression of mir-374-5p, mir-379-5p, and mir-503-5p. Taken together, our findings suggest that the PTHrP concentration gradient across the growth plate induces differential expression of mir-374-5p, mir-379-5p, and mir-503-5p between the PZ and the HZ. In the PZ, the higher expression levels of these miRNAs promote proliferation and inhibit hypertrophic differentiation. In the HZ, downregulation of these miRNAs inhibits proliferation and promotes hypertrophic differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrocitos/citología , Placa de Crecimiento/metabolismo , Hipertrofia/fisiopatología , MicroARNs/metabolismo , Animales , Ciclo Celular , Células Cultivadas , Condrocitos/metabolismo , Regulación de la Expresión Génica , Placa de Crecimiento/crecimiento & desarrollo , Humanos , Hipertrofia/genética , Hipertrofia/metabolismo , Masculino , MicroARNs/genética , Ratas , Ratas Sprague-Dawley
12.
Mol Diagn Ther ; 21(6): 685-692, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28986857

RESUMEN

BACKGROUND: Diagnostic genetic testing programmes based on next-generation DNA sequencing have resulted in the accrual of large datasets of targeted raw sequence data. Most diagnostic laboratories process these data through an automated variant-calling pipeline. Validation of the chosen analytical methods typically depends on confirming the detection of known sequence variants. Despite improvements in short-read alignment methods, current pipelines are known to be comparatively poor at detecting large insertion/deletion mutations. METHODS: We performed clinical validation of a local reassembly tool, ABRA (assembly-based realigner), through retrospective reanalysis of a cohort of more than 2000 hereditary cancer cases. RESULTS: ABRA enabled detection of a 96-bp deletion, 4-bp insertion mutation in PMS2 that had been initially identified using a comparative read-depth approach. We applied an updated pipeline incorporating ABRA to the entire cohort of 2000 cases and identified one previously undetected pathogenic variant, a 23-bp duplication in PTEN. We demonstrate the effect of read length on the ability to detect insertion/deletion variants by comparing HiSeq2500 (2 × 101-bp) and NextSeq500 (2 × 151-bp) sequence data for a range of variants and thereby show that the limitations of shorter read lengths can be mitigated using appropriate informatics tools. CONCLUSIONS: This work highlights the need for ongoing development of diagnostic pipelines to maximize test sensitivity. We also draw attention to the large differences in computational infrastructure required to perform day-to-day versus large-scale reprocessing tasks.


Asunto(s)
Biología Computacional/métodos , Análisis Mutacional de ADN/métodos , Pruebas Genéticas/métodos , Neoplasias/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Fosfohidrolasa PTEN/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos
14.
Am J Hum Genet ; 101(3): 451-458, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886343

RESUMEN

The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different families to adult-onset cerebellar ataxia, and a de novo truncation mutation resulting in a dominant-negative effect that is associated with juvenile-onset ataxia and intellectual disability. Crucially, the gain-of-function mutations could be pharmacologically modulated in vitro using an existing FDA-approved drug, Nitazoxanide, suggesting a possible avenue for treatment, which is currently unavailable for ataxias.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Mutación Missense/genética , Receptores de Glutamato Metabotrópico/genética , Ataxias Espinocerebelosas/genética , Tiazoles/farmacología , Antiparasitarios/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Nitrocompuestos , Linaje , Transducción de Señal/efectos de los fármacos , Ataxias Espinocerebelosas/patología
15.
Eur J Hum Genet ; 25(4): 416-422, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28120840

RESUMEN

Although technically possible, few clinical laboratories across the world have implemented non-invasive prenatal diagnosis (NIPD) for selected single-gene disorders, mostly owing to the elevated costs incurred. Having previously proven that NIPD for X-linked disorders can be feasibly implemented in clinical practice, we have now developed a test for the NIPD of an autosomal-recessive disorder, spinal muscular atrophy (SMA). Cell-free DNA was extracted from maternal blood and prepared for massively parallel sequencing on an Illumina MiSeq by targeted capture enrichment of single-nucleotide polymorphisms across a 6 Mb genomic window on chromosome 5 containing the SMN1 gene. Maternal, paternal and proband DNA samples were also tested for haplotyping purposes. Sequencing data was analysed by relative haplotype dosage (RHDO). Six pregnant SMA carriers and 10 healthy pregnant donors were recruited through the NIPSIGEN study. Inheritance of the maternally and paternally derived alleles of the affected SMN1 gene was determined in the foetus by RHDO analysis for autosomal-recessive disorders. DNA from the proband (for SMA carriers) or an invasively obtained foetal sample (for healthy pregnant donors) was used to identify the maternal and paternal reference haplotypes associated with the affected SMN1 gene. Results for all patients correlated with known outcomes and showed a testing specificity and sensitivity of 100%. On top of showing high accuracy and reliability throughout the stages of validation, our novel test for NIPD of SMA is also affordable and viable for implementation into clinical service.


Asunto(s)
Pruebas Genéticas/métodos , Haplotipos , Atrofia Muscular Espinal/diagnóstico , Diagnóstico Prenatal/métodos , Estudios de Casos y Controles , Femenino , Pruebas Genéticas/normas , Heterocigoto , Humanos , Masculino , Atrofia Muscular Espinal/genética , Linaje , Polimorfismo de Nucleótido Simple , Embarazo , Diagnóstico Prenatal/normas , Sensibilidad y Especificidad , Proteína 1 para la Supervivencia de la Neurona Motora/genética
16.
Prenat Diagn ; 36(4): 312-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26824862

RESUMEN

OBJECTIVE: Development of an accurate and affordable test for the non-invasive prenatal diagnosis of Duchenne and Becker muscular dystrophies (DMD/BMD) to implement in clinical practice. METHOD: Cell-free DNA was extracted from maternal blood and prepared for massively parallel sequencing on an Illumina MiSeq by targeted capture enrichment of single nucleotide polymorphisms (SNPs) across the dystrophin gene on chromosome X. Sequencing data were analysed by relative haplotype dosage. RESULTS: Seven healthy pregnant donors and two pregnant DMD carriers all bearing a male fetus were recruited through the non-invasive prenatal diagnosis for single gene disorders study. Non-invasive prenatal diagnosis testing was conducted by relative haplotype dosage analysis for X-linked disorders where the genomic DNA from the chorionic villus sampling (for healthy pregnant donors) or from the proband (for pregnant DMD carriers) was used to identify the reference haplotype. Results for all patients showed a test accuracy of 100%, when the calculated fetal fraction was >4% and correlated with known outcomes. A recombination event was also detected in a DMD patient. CONCLUSION: Our new test for NIPD of DMD/BMD has been shown to be accurate and reliable during initial stages of validation. It is also feasible for implementation into clinical service.


Asunto(s)
Distrofina/genética , Pruebas Genéticas/métodos , Haplotipos , Pruebas de Detección del Suero Materno/métodos , Distrofia Muscular de Duchenne/diagnóstico , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Sistema Libre de Células , ADN/sangre , Femenino , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Embarazo
17.
Cell Rep ; 12(5): 821-36, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26212328

RESUMEN

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/enzimología , Sistema de Señalización de MAP Quinasas , Mutación , Tirosina Quinasa 3 Similar a fms/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Estructura Terciaria de Proteína , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
18.
Mol Endocrinol ; 29(6): 921-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25866874

RESUMEN

Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age-down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3'-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth.


Asunto(s)
Crecimiento y Desarrollo/genética , MicroARNs/genética , Regulación hacia Arriba/genética , Regiones no Traducidas 3'/genética , Envejecimiento/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Riñón/metabolismo , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Datos de Secuencia Molecular , Miocardio/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Brain Struct Funct ; 220(3): 1497-509, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24647753

RESUMEN

Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx9 is highly expressed in the developing pineal gland of the rat with transcript abundance peaking early in development; transcript levels decrease postnatally to nearly undetectable levels in the adult, a temporal pattern that is generally similar to that reported for Lhx9 expression in other brain regions. Studies with C57BL/6J Lhx9(-/-) mutant mice revealed marked alterations in brain and pineal development. Specifically, the superficial pineal gland is hypoplastic, being reduced to a small cluster of pinealocytes surrounded by meningeal and vascular tissue. The deep pineal gland and the pineal stalk are also reduced in size. Although the brains of neonatal Lhx9(-/-) mutant mice appear normal, severe hydrocephalus develops in about 70% of the Lhx9(-/-) mice at 5-8 weeks of age; these observations are the first to document that deletion of Lhx9 results in hydrocephalus and as such indicate that Lhx9 contributes to the maintenance of normal brain structure. Whereas hydrocephalus is absent in neonatal Lhx9(-/-)mutant mice, the neonatal pineal gland in these animals is hypoplastic. Accordingly, it appears that Lhx9 is essential for early development of the mammalian pineal gland and that this effect is not secondary to hydrocephalus.


Asunto(s)
Hidrocefalia/genética , Proteínas con Homeodominio LIM/genética , Glándula Pineal/embriología , Factores de Transcripción/genética , Animales , Hidrocefalia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glándula Pineal/metabolismo , Glándula Pineal/patología , Ratas , Ratas Sprague-Dawley
20.
J Pain ; 15(12): 1338-1359, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25281809

RESUMEN

UNLABELLED: Disorders of pain neural systems are frequently chronic and, when recalcitrant to treatment, can severely degrade the quality of life. The pain pathway begins with sensory neurons in dorsal root or trigeminal ganglia, and the neuronal subpopulations that express the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) ion channel transduce sensations of painful heat and inflammation and play a fundamental role in clinical pain arising from cancer and arthritis. In the present study, we elucidate the complete transcriptomes of neurons from the TRPV1 lineage and a non-TRPV1 neuroglial population in sensory ganglia through the combined application of next-gen deep RNA-Seq, genetic neuronal labeling with fluorescence-activated cell sorting, or neuron-selective chemoablation. RNA-Seq accurately quantitates gene expression, a difficult parameter to determine with most other methods, especially for very low and very high expressed genes. Differentially expressed genes are present at every level of cellular function from the nucleus to the plasma membrane. We identified many ligand receptor pairs in the TRPV1 population, suggesting that autonomous presynaptic regulation may be a major regulatory mechanism in nociceptive neurons. The data define, in a quantitative, cell population-specific fashion, the molecular signature of a distinct and clinically important group of pain-sensing neurons and provide an overall framework for understanding the transcriptome of TRPV1 nociceptive neurons. PERSPECTIVE: Next-gen RNA-Seq, combined with molecular genetics, provides a comprehensive and quantitative measurement of transcripts in TRPV1 lineage neurons and a contrasting transcriptome from non-TRPV1 neurons and cells. The transcriptome highlights previously unrecognized protein families, identifies multiple molecular circuits for excitatory or inhibitory autocrine and paracrine signaling, and suggests new combinatorial approaches to pain control.


Asunto(s)
Ganglios Espinales/metabolismo , Neuronas Aferentes/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Linaje de la Célula , Expresión Génica , Perfilación de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones Transgénicos , Neuroglía/metabolismo , Dolor/metabolismo , Ratas , Especificidad de la Especie , Canales Catiónicos TRPV/genética , Transcriptoma , Nervio Trigémino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...