Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Bioorg Chem ; 138: 106615, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37244229

RESUMEN

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Antiparasitarios/farmacología , Antiprotozoarios/farmacología , Éteres Fosfolípidos/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Colina/uso terapéutico
2.
Pathogens ; 11(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36145483

RESUMEN

A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.

3.
Front Cell Infect Microbiol ; 11: 657257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34476220

RESUMEN

T. cruzi, the causal agent of Chagas disease, is a parasite able to infect different types of host cells and to persist chronically in the tissues of human and animal hosts. These qualities and the lack of an effective treatment for the chronic stage of the disease have contributed to the durability and the spread of the disease around the world. There is an urgent necessity to find new therapies for Chagas disease. Drug repurposing is a promising and cost-saving strategy for finding new drugs for different illnesses. In this work we describe the effect of carvedilol on T. cruzi. This compound, selected by virtual screening, increased the accumulation of immature autophagosomes characterized by lower acidity and hydrolytic properties. As a consequence of this action, the survival of trypomastigotes and the replication of epimastigotes and amastigotes were impaired, resulting in a significant reduction of infection and parasite load. Furthermore, carvedilol reduced the whole-body parasite burden peak in infected mice. In summary, in this work we present a repurposed drug with a significant in vitro and in vivo activity against T. cruzi. These data in addition to other pharmacological properties make carvedilol an attractive lead for Chagas disease treatment.


Asunto(s)
Parásitos , Trypanosoma cruzi , Animales , Autofagia , Carvedilol/farmacología , Reposicionamiento de Medicamentos , Ratones
4.
mSystems ; 6(4): e0062821, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34282941

RESUMEN

Leishmania donovani is a parasitic protist that causes the lethal Kala-azar fever in India and East Africa. Gene expression in Leishmania is regulated by gene copy number variation and inducible translation while RNA synthesis initiates at a small number of sites per chromosome and proceeds through polycistronic transcription units, precluding a gene-specific regulation (C. Clayton and M. Shapira, Mol Biochem Parasitol 156:93-101, 2007, https://doi.org/10.1016/j.molbiopara.2007.07.007). Here, we analyze the dynamics of chromatin structure in both life cycle stages of the parasite and find evidence for an additional, epigenetic gene regulation pathway in this early branching eukaryote. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis (J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Nat Methods 10:1213-1218, 2013, https://doi.org/10.1038/nmeth.2688) predominantly shows euchromatin at transcription start regions in fast-growing promastigotes, but mostly heterochromatin in the slowly proliferating amastigotes, the mammalian stage, reflecting a previously shown increase of histone synthesis in the latter stage. IMPORTANCE Leishmania parasites are important pathogens with a global impact and cause poverty-related illness and death. They are devoid of classic cis- and trans-acting transcription regulators but use regulated translation and gene copy number variations to adapt to hosts and environments. In this work, we show that transcription start regions present as open euchromatin in fast-growing insect stages but as less-accessible heterochromatin in the slowly proliferating amastigote stage, indicating an epigenetic control of gene accessibility in this early branching eukaryotic pathogen. This finding should stimulate renewed interest in the control of RNA synthesis in Leishmania and related parasites.

5.
Molecules ; 26(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34299479

RESUMEN

A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.


Asunto(s)
Antiparasitarios/síntesis química , Antiparasitarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Diseño de Fármacos , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Fosfolípidos/farmacología , Enfermedad de Chagas/parasitología , Química Clic , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis/parasitología , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacos
6.
Microorganisms ; 9(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670713

RESUMEN

An immunostimulatory glycolipid molecule from the intestinal protozoan parasite Entamoeba histolytica (Eh) and its synthetic analogs derived from its phosphatidylinositol-b-anchor (EhPIb) previously showed considerable immunotherapeutic effects against Leishmania major infection in vitro and in vivo. Here, we describe a high content screening assay, based on primary murine macrophages. Parasites detection is based on a 90 kDA heat shock protein-specific staining, enabling the detection of several Leishmania species. We validated the assay using L. major, L. braziliensis, L. donovani, and L. infantum as well as investigated the anti-leishmanial activity of six immunostimulatory EhPIb-compounds (Eh-1 to Eh-6). Macrophages infected with dermotropic species were more sensitive towards treatment with the compounds as their viability showed a stronger reduction compared to macrophages infected with viscerotropic species. Most compounds caused a significant reduction of the infection rates and the parasite burdens depending on the infecting species. Only compound Eh-6 was found to have activity against all Leishmania species. Considering the challenges in anti-leishmanial drug discovery, we developed a multi-species screening assay capable of utilizing non-recombinant parasite strains, and demonstrated its usefulness by screening macrophage-targeting EhPIb-compounds showing their potential for the treatment of cutaneous and visceral leishmaniasis.

7.
Comput Struct Biotechnol J ; 18: 4016-4023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363698

RESUMEN

Here we describe the non-canonical control of gene expression in Leishmania, a single-cell parasite that is responsible for one of the major neglected tropical diseases. We discuss the lack of regulated RNA synthesis, the post-transcriptional gene regulation including RNA stability and regulated translation. We also show that genetic adaptations such as mosaic aneuploidy, gene copy number variations and DNA sequence polymorphisms are important means for overcoming drug challenge and environmental diversity. These mechanisms are discussed in the context of the unique flow of genetic information found in Leishmania and related protists.

8.
Genes (Basel) ; 11(10)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007987

RESUMEN

The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR-Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR-Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite's biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.


Asunto(s)
Sistemas CRISPR-Cas , Endopeptidasa Clp/genética , Proteínas de Choque Térmico/genética , Leishmania braziliensis/genética , Proteínas Protozoarias/genética , Genética Inversa , Endopeptidasa Clp/metabolismo , Edición Génica , Marcación de Gen , Genes Protozoarios , Proteínas de Choque Térmico/metabolismo , Leishmania braziliensis/fisiología , Leishmania major/genética , Leishmania major/fisiología , Mutación , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/metabolismo , Termotolerancia
9.
Genes (Basel) ; 11(10)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066659

RESUMEN

The protozoan parasite Leishmania donovani is part of an early eukaryotic branch and depends on post-transcriptional mechanisms for gene expression regulation. This includes post-transcriptional protein modifications, such as protein phosphorylation. The presence of genes for protein SUMOylation, i.e., the covalent attachment of small ubiquitin-like modifier (SUMO) polypeptides, in the Leishmania genomes prompted us to investigate the importance of the sentrin-specific protease (SENP) and its putative client, SUMO, for the vitality and infectivity of Leishmania donovani. While SENP null mutants are viable with reduced vitality, viable SUMO null mutant lines could not be obtained. SUMO C-terminal processing is disrupted in SENP null mutants, preventing SUMO from covalent attachment to proteins and nuclear translocation. Infectivity in vitro is not affected by the loss of SENP-dependent SUMO processing. We conclude that SENP is required for SUMO processing, but that functions of unprocessed SUMO are critical for Leishmania viability.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Leishmania donovani/metabolismo , Leishmaniasis/parasitología , Macrófagos/citología , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Animales , Células Cultivadas , Cisteína Endopeptidasas/genética , Leishmania donovani/genética , Leishmaniasis/genética , Leishmaniasis/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Especificidad por Sustrato
10.
Sci Rep ; 10(1): 15969, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994468

RESUMEN

Leishmania donovani is a trypanosomatidic parasite and causes the lethal kala-azar fever, a neglected tropical disease. The Trypanosomatida are devoid of transcriptional gene regulation and rely on gene copy number variations and translational control for their adaption to changing conditions. To survive at mammalian tissue temperatures, L. donovani relies on the small heat shock protein HSP23, the loss of which renders the parasites stress sensitive and impairs their proliferation. Here, we analysed a spontaneous escape mutant with wild type-like in vitro growth. Further selection of this escape strains resulted in a complete reversion of the phenotype. Whole genome sequencing revealed a correlation between stress tolerance and the massive amplification of a six-gene cluster on chromosome 35, with further analysis showing over expression of the casein kinase 1.2 gene as responsible. In vitro phosphorylation experiments established both HSP23 and the related P23 co-chaperone as substrates and modulators of casein kinase 1.2, providing evidence for another crucial link between chaperones and signal transduction protein kinases in this early branching eukaryote.


Asunto(s)
Quinasa de la Caseína I/genética , Proteínas de Choque Térmico Pequeñas/genética , Leishmania donovani/crecimiento & desarrollo , Mutación , Regulación hacia Arriba , Quinasa de la Caseína I/metabolismo , Mapeo Cromosómico , Proteínas de Choque Térmico Pequeñas/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Familia de Multigenes , Fenotipo , Fosforilación , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Estrés Fisiológico , Secuenciación Completa del Genoma
11.
Artículo en Inglés | MEDLINE | ID: mdl-32393489

RESUMEN

With an estimated number of new cases annually of approximately 1.4 million, leishmaniasis belongs to the most important parasitic diseases in the world. Nevertheless, existing drugs against leishmaniasis in general have several drawbacks that urgently necessitate new drug development. A glycolipid molecule of the intestinal protozoan parasite Entamoeba histolytica and its synthetic analogs previously showed considerable immunotherapeutic effects against Leishmania major infection. Here, we designed and synthesized a series of new immunostimulatory compounds derived from the phosphatidylinositol b anchor of Entamoeba histolytica (EhPIb) subunit of the native compound and investigated their antileishmanial activity in vitro and in vivo in a murine model of cutaneous leishmaniasis. The new synthetic EhPIb analogs showed almost no toxicity in vitro Treatment with the analogs significantly decreased the parasite load in murine and human macrophages in vitro In addition, topical application of the EhPIb analog Eh-1 significantly reduced cutaneous lesions in the murine model, correlating with an increase in the production of selected Th1 cytokines. In addition, we could show in in vitro experiments that treatment with Eh-1 led to a decrease in mRNA expression of arginase-1 (Arg1) and interleukin 4 (IL-4), which are required by the parasites to circumvent their elimination by the immune response. The use of the host-targeting synthetic EhPIb compounds, either alone or in combination therapy with antiparasitic drugs, shows promise for treating cutaneous leishmaniasis and therefore might improve the current unsatisfactory status of chemotherapy against this infectious disease.


Asunto(s)
Antiprotozoarios , Entamoeba histolytica , Leishmania major , Leishmaniasis Cutánea , Preparaciones Farmacéuticas , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C
12.
Eur J Med Chem ; 183: 111676, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31542713

RESUMEN

Leishmaniasis, a major health problem worldwide, has a limited arsenal of drugs for its control. The appearance of resistance to first- and second-line anti-leishmanial drugs confirms the need to develop new and less toxic drugs that overcome spontaneous resistance. In the present study, we report the design and synthesis of a novel library of 38 flavonol-like compounds and their evaluation in a panel of assays encompassing parasite killing, pharmacokinetics, genomics and ADME-Toxicity resulting in the progression of a compound in the drug discovery value chain. Compound 19, 2-(benzo[b]thiophen-3-yl)-3-hydroxy-6-methoxy-4H-chromen-4-one, exhibited a broad-spectrum activity against Leishmania spp. (EC50 1.9 µM for Leishmania infantum, 3.4 µM for L. donovani, 6.7 µM for L. major), Trypanosoma cruzi (EC50 7.5 µM) and T. brucei (EC50 0.8 µM). Focusing on anti-Leishmania activity, compound 19 challenge in vitro did not select for resistance markers in L. donovani, while a Cos-Seq screening for dominant resistance genes identified a gene locus on chromosome 36 that became ineffective at concentrations beyond EC50. Thus, compound 19 is a promising scaffold to tackle drug resistance in Leishmania infection. In vivo pharmacokinetic studies indicated that compound 19 has a long half-life (intravenous (IV): 63.2 h; per os (PO): 46.9 h) with an acceptable ADME-Toxicity profile. When tested in Leishmania infected hamsters, no toxicity and limited efficacy were observed. Low solubility and degradation were investigated spectroscopically as possible causes for the sub-optimal pharmacokinetic properties. Compound 19 resulted a specific compound based on the screening against a protein set, following the intrinsic fluorescence changes.


Asunto(s)
Antiprotozoarios , Flavonoles , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Tiofenos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Cricetinae , Evaluación Preclínica de Medicamentos , Resistencia a Medicamentos/efectos de los fármacos , Flavonoles/síntesis química , Flavonoles/química , Flavonoles/farmacología , Genómica , Humanos , Fosforilcolina/química , Fosforilcolina/farmacología , Tiofenos/síntesis química , Tiofenos/química , Tiofenos/farmacología
13.
Methods Mol Biol ; 1971: 123-140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30980301

RESUMEN

Cosmid libraries can represent an entire genome in a library of circular DNA molecules, allowing for the faithful amplification, cloning and isolation of large genomic DNA fragments. Moreover, using the so-called shuttle cosmid vectors, genomic DNA may be propagated in bacteria and in eukaryotic cells, which is a prerequisite for classic functional cloning and for the newly described Cos-Seq strategies.


Asunto(s)
Clonación Molecular , Cósmidos/genética , Biblioteca de Genes , Leishmania/genética
14.
Methods Mol Biol ; 1971: 169-188, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30980303

RESUMEN

While homologous recombination-based gene replacement is about to be supplanted by more modern approaches, it is still retaining usefulness for genes that prove to be poor targets for CRISPR/cas-based approaches. Homologous recombination has proven to be relatively robust to minor sequence mismatches between GOI-flanking sequences and the gene replacement constructs, and the faithfulness of recombination events is easily verified by whole-genome sequencing. Moreover, the availability of custom synthetic gene production by numerous service providers should allow for a relatively quick generation of null mutants without the need to introduce additional protein-coding genes beyond the selection markers.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen , Recombinación Homóloga , Leishmania/genética
15.
Sci Rep ; 9(1): 5074, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911045

RESUMEN

Leishmania parasites are thought to control protein activity at the post-translational level, e.g. by protein phosphorylation. In the pathogenic amastigote, the mammalian stage of Leishmania parasites, heat shock proteins show increased phosphorylation, indicating a role in stage-specific signal transduction. Here we investigate the impact of phosphosites in the L. donovani heat shock protein 90. Using a chemical knock-down/genetic complementation approach, we mutated 11 confirmed or presumed phosphorylation sites and assessed the impact on overall fitness, morphology and in vitro infectivity. Most phosphosite mutations affected the growth and morphology of promastigotes in vitro, but with one exception, none of the phosphorylation site mutants had a selective impact on the in vitro infection of macrophages. Surprisingly, aspartate replacements mimicking the negative charge of phosphorylated serines or threonines had mostly negative impacts on viability and infectivity. HSP90 is a substrate for casein kinase 1.2-catalysed phosphorylation in vitro. While several putative phosphosite mutations abrogated casein kinase 1.2 activity on HSP90, only Ser289 could be identified as casein kinase target by mass spectrometry. In summary, our data show HSP90 as a downstream client of phosphorylation-mediated signalling in an organism that depends on post-transcriptional gene regulation.


Asunto(s)
Caseína Quinasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Leishmania donovani/metabolismo , Leishmania donovani/patogenicidad , Secuencia de Aminoácidos , Caseína Quinasas/genética , Proteínas HSP90 de Choque Térmico/genética , Leishmania donovani/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fosforilación , Transducción de Señal/genética
16.
SLAS Discov ; 24(3): 346-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30784368

RESUMEN

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion-toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


Asunto(s)
Descubrimiento de Drogas/métodos , Tripanocidas/análisis , Tripanocidas/farmacología , Tripanosomiasis/tratamiento farmacológico , Productos Biológicos/química , Humanos , Relación Estructura-Actividad , Tripanocidas/uso terapéutico
17.
ACS Infect Dis ; 5(1): 111-122, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30380837

RESUMEN

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and L. infantum, is responsible for ∼30 000 deaths annually. Available treatments are inadequate, and there is a pressing need for new therapeutics. N-Myristoyltransferase (NMT) remains one of the few genetically validated drug targets in these parasites. Here, we sought to pharmacologically validate this enzyme in Leishmania. A focused set of 1600 pyrazolyl sulfonamide compounds was screened against L. major NMT in a robust high-throughput biochemical assay. Several potent inhibitors were identified with marginal selectivity over the human enzyme. There was little correlation between the enzyme potency of these inhibitors and their cellular activity against L. donovani axenic amastigotes, and this discrepancy could be due to poor cellular uptake due to the basicity of these compounds. Thus, a series of analogues were synthesized with less basic centers. Although most of these compounds continued to suffer from relatively poor antileishmanial activity, our most potent inhibitor of LmNMT (DDD100097, K i of 0.34 nM) showed modest activity against L. donovani intracellular amastigotes (EC50 of 2.4 µM) and maintained a modest therapeutic window over the human enzyme. Two unbiased approaches, namely, screening against our cosmid-based overexpression library and thermal proteome profiling (TPP), confirm that DDD100097 (compound 2) acts on-target within parasites. Oral dosing with compound 2 resulted in a 52% reduction in parasite burden in our mouse model of VL. Thus, NMT is now a pharmacologically validated target in Leishmania. The challenge in finding drug candidates remains to identify alternative strategies to address the drop-off in activity between enzyme inhibition and in vitro activity while maintaining sufficient selectivity over the human enzyme, both issues that continue to plague studies in this area.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antiprotozoarios/farmacología , Descubrimiento de Drogas , Leishmania donovani/efectos de los fármacos , Pirazoles/química , Pirazoles/farmacología , Animales , Cósmidos , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Proteoma/análisis , Proteómica
18.
mSystems ; 3(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505948

RESUMEN

The 90-kDa heat shock protein (HSP90) of eukaryotes is a highly abundant and essential chaperone required for the maturation of regulatory and signal proteins. In the protozoan parasite Leishmania donovani, causative agent of the fatal visceral leishmaniasis, HSP90 activity is essential for cell proliferation and survival. Even more importantly, its inhibition causes life cycle progression from the insect stage to the pathogenic, mammalian stage. To unravel the molecular impact of HSP90 activity on the parasites' gene expression, we performed a ribosome profiling analysis of L. donovani, comparing genome-wide protein synthesis patterns in the presence and absence of the HSP90-specific inhibitor radicicol and an ectopically expressed radicicol-resistant HSP90 variant. We find that ribosome-protected RNA faithfully maps open reading frames and represents 97% of the annotated protein-coding genes of L. donovani. Protein synthesis was found to correlate poorly with RNA steady-state levels, indicating a regulated translation as primary mechanism for HSP90-dependent gene expression. The results confirm inhibitory effects of HSP90 on the synthesis of Leishmania proteins that are associated with the pathogenic, intracellular stage of the parasite. Those include heat shock proteins, redox enzymes, virulence-enhancing surface proteins, proteolytic pathways, and a complete set of histones. Conversely, HSP90 promotes fatty acid synthesis enzymes. Complementing radicicol treatment with the radicicol-resistant HSP90rr variant revealed important off-target radicicol effects that control a large number of the above-listed proteins. Leishmania lacks gene-specific transcription regulation and relies on regulated translation instead. Our ribosome footprinting analysis demonstrates a controlling function of HSP90 in stage-specific protein synthesis but also significant, HSP90-independent effects of the inhibitor radicicol. IMPORTANCE Leishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen.

19.
Sci Rep ; 7(1): 10202, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860596

RESUMEN

MAP kinases (MAPK) are the most downstream kinases in signal transduction cascades and regulate critical cellular activities such as cell proliferation, differentiation, mortality, stress response, and apoptosis. The Leishmania donovani MAPK1 (LdMAPK1) is involved in parasite viability and drug resistance, but its substrates have not been identified yet. Aiming to identify the possible targets(s) of LdMAPK1, we sought to isolate interacting partners by co-immunoprecipitation, gel electrophoresis and mass spectrometry. Out of fifteen analyzed protein bands, four were identified as subunits of the HSP90 foldosome complex, namely HSP 90, HSP70, STI and SGT. Western blot analysis not only confirmed that LdMAPK1 interacts with HSP70 and HSP90 but also demonstrated that MAPK1 abundance modulates their expression. The interaction is sensitive to treatment with AMTZD, a competitive ERK inhibitor. MAPK1 also displayed kinase activity with HSP90 or HSP70 as substrates. By phosphorylating HSPs in the foldosome complex, MAPK1 may regulate the stability and activity of the foldosome which in turn plays a pivotal role in the parasitic life cycle of L. donovani. Our study therefore implicates LdMAPK1 in the post-translational modification and possibly the regulation of heat shock proteins. Conversely, HSP90 and HSP70 are identified as the first substrates of LdMAPK1.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Leishmania donovani/crecimiento & desarrollo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Leishmania donovani/metabolismo , Espectrometría de Masas , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteínas Protozoarias/metabolismo
20.
Sci Rep ; 7(1): 9472, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842620

RESUMEN

Intracellular pathogens belonging to the genus Leishmania have developed effective strategies that enable them to survive within host immune cells. Immunostimulatory compounds that counteract such immunological escape mechanisms represent promising treatment options for diseases. Here, we demonstrate that a lipopeptidephosphoglycan (LPPG) isolated from the membrane of a protozoan parasite, Entamoeba histolytica (Eh), shows considerable immunostimulatory effects targeted against Leishmania (L.) major, a representative species responsible for cutaneous leishmaniasis (CL). Treatment led to a marked reduction in the number of intracellular Leishmania parasites in vitro, and ameliorated CL in a mouse model. We next designed and synthesized analogs of the phosphatidylinositol anchors harbored by EhLPPG; two of these analogs reproduced the anti-leishmanial activity of the native compound by inducing production of pro-inflammatory cytokines. The use of such compounds, either alone or as a supportive option, might improve the currently unsatisfactory treatment of CL and other diseases caused by pathogen-manipulated immune responses.


Asunto(s)
Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Entamoeba histolytica/química , Glucolípidos/síntesis química , Glucolípidos/farmacología , Leishmania/efectos de los fármacos , Animales , Antiprotozoarios/química , Supervivencia Celular/efectos de los fármacos , Glucolípidos/química , Hemólisis , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...