Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 854824, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370788

RESUMEN

How corticospinal excitability changes during eccentric locomotor exercise is unknown. In the present study, 13 volunteers performed 30-min strenuous concentric and eccentric cycling bouts at the same power output (60% concentric peak power output). Transcranial magnetic and electrical femoral nerve stimulations were applied at exercise onset (3rd min) and end (25th min). Motor-evoked potentials (MEPs) amplitude was measured for the rectus femoris (RF) and vastus lateralis (VL) muscles with surface electromyography (EMG) and expressed as a percentage of maximal M-wave amplitude (MMAX). EMG amplitude 100 ms prior to MEPs and the silent period duration were calculated. There was no change in any neural parameter during the exercises (all P > 0.24). VL and RF MMAX were unaffected by exercise modality (all P > 0.38). VL MEP amplitude was greater (26 ± 11.4 vs. 15.2 ± 7.7% MMAX; P = 0.008) during concentric than eccentric cycling whereas RF MEP amplitude was not different (24.4 ± 10.8 vs. 17.2 ± 9.8% MMAX; P = 0.051). While VL EMG was higher during concentric than eccentric cycling (P = 0.03), RF EMG showed no significant difference (P = 0.07). Similar silent period durations were found (RF: 120 ± 30 ms; VL: 114 ± 27 ms; all P > 0.61), but the silent period/MEP ratio was higher during eccentric than concentric cycling for both muscles (all P < 0.02). In conclusion, corticospinal excitability to the knee extensors is lower and relative silent period longer during eccentric than concentric cycling, yet both remained unaltered with time.

2.
Scand J Med Sci Sports ; 32(1): 45-59, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34533875

RESUMEN

This study aimed to compare neuromuscular alterations and perceptions of effort and muscle pain induced by concentric and eccentric cycling performed at the same power output or effort perception. Fifteen participants completed three 30-min sessions: one in concentric at 60% peak power output (CON) and two in eccentric, at the same power output (ECCPOWER ) or same perceived effort (ECCEFFORT ). Muscle pain, perception of effort, oxygen uptake as well as rectus femoris and vastus lateralis electromyographic activities were collected when pedaling. The knee extensors maximal voluntary contraction (MVC) torque, the torque evoked by double stimulations at 100 Hz and 10 Hz (Dt100; Dt10), and the voluntary activation level (VAL) were evaluated before and after exercise. Power output was higher in ECCEFFORT than CON (89.1 ± 23.3% peak power). Muscle pain and effort perception were greater in CON than ECCPOWER (p < 0.03) while muscle pain was similar in CON and ECCEFFORT (p > 0.43). MVC torque, Dt100, and VAL dropped in all conditions (p < 0.04). MVC torque (p < 0.001) and the Dt10/ Dt100 ratio declined further in ECCEFFORT (p < 0.001). Eccentric cycling perceived as difficult as concentric cycling caused similar muscle pain but more MVC torque decrease. A given power output induced lower perceptions of pain and effort in eccentric than in concentric yet similar MVC torque decline. While neural impairments were similar in all conditions, eccentric cycling seemed to alter excitation-contraction coupling. Clinicians should thus be cautious when setting eccentric cycling intensity based on effort perception.


Asunto(s)
Contracción Muscular , Mialgia , Ciclismo , Electromiografía , Humanos , Músculo Esquelético , Percepción , Torque
3.
Artículo en Inglés | MEDLINE | ID: mdl-34360206

RESUMEN

There is a wide range of cadence available to cyclists to produce power, yet they choose to pedal across a narrow one. While neuromuscular alterations during a pedaling bout at non-preferred cadences were previously reviewed, modifications subsequent to one fatiguing session or training intervention have not been focused on. We performed a systematic literature search of PubMed and Web of Science up to the end of 2020. Thirteen relevant articles were identified, among which eleven focused on fatigability and two on training intervention. Cadences were mainly defined as "low" and "high" compared with a range of freely chosen cadences for given power output. However, the heterogeneity of selected cadences, neuromuscular assessment methodology, and selected population makes the comparison between the studies complicated. Even though cycling at a high cadence and high intensity impaired more neuromuscular function and performance than low-cadence cycling, it remains unclear if cycling cadence plays a role in the onset of fatigue. Research concerning the effect of training at non-preferred cadences on neuromuscular adaptation allows us to encourage the use of various training stimuli but not to say whether a range of cadences favors subsequent neuromuscular performance.


Asunto(s)
Adaptación Fisiológica , Ciclismo , Humanos , Consumo de Oxígeno
5.
Eur J Appl Physiol ; 121(3): 697-706, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389143

RESUMEN

Corticospinal excitability, and particularly the balance between cortical inhibitory and excitatory processes (assessed in a muscle using single and paired-pulse transcranial magnetic stimulation), are affected by neurodegenerative pathologies or following a stroke. This review describes how locomotor exercises may counterbalance these neuroplastic alterations, either when performed under its conventional form (e.g., walking or cycling) or when comprising eccentric (i.e., active lengthening) muscle contractions. Non-fatiguing conventional locomotor exercise decreases intracortical inhibition and/or increases intracortical facilitation. These modifications notably seem to be a consequence of neurotrophic factors (e.g., brain-derived neurotrophic factor) resulting from the hemodynamic solicitation. Furthermore, it can be inferred from non-invasive brain and peripheral stimulation studies that repeated activation of neural networks can endogenously shape neuroplasticity. Such mechanisms could also occur following eccentric exercises (lengthening of the muscle), during which motor-related cortical potential (electroencephalography) is of greater magnitude and lasts longer than during concentric exercises (i.e., muscle shortening). As single-joint eccentric exercise decreased short- and long-interval intracortical inhibition and increased intracortical facilitation, locomotor eccentric exercise (e.g., downhill walking or eccentric cycling) may be even more potent by adding hemodynamic-related neuroplastic processes to endogenous processes. Besides, eccentric exercise is especially useful to develop relatively high force levels at low cardiorespiratory and perceived intensities, which can be a training goal alongside the induction of neuroplastic changes. Even though indirect evidence let us think that locomotor eccentric exercise could shape neuroplasticity in ways relevant to neurorehabilitation, its efficacy remains speculative. We provide future research directions on the neuroplastic effects and underlying mechanisms of locomotor exercise.


Asunto(s)
Ejercicio Físico , Locomoción , Contracción Muscular , Músculo Esquelético/fisiología , Plasticidad Neuronal , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-33105553

RESUMEN

Background: This study tested muscle activity (EMG) and perception of effort in eccentric (ECC) and concentric (CON) cycling before and after four sessions of both. Methods: Twelve volunteers naïve to ECC cycling attended the laboratory six times. On day 1, they performed a CON cycling peak power output (PPO) test. They then carried-out four sessions comprising two sets of 1 to 1.5-min cycling bouts at 5 intensities (30, 45, 60, 75, and 90% PPO) in ECC and CON cycling. On day 2 and day 6 (two weeks apart), EMG root mean square of the vastus lateralis (VL), rectus femoris (RF), biceps femoris (BF), and soleus (SOL) muscles, was averaged from 15 to 30 s within each 1-min bout and perception of effort was asked after 45 s. Results: Before the four cycling sessions, while VL EMG was lower in ECC than CON cycling, most variables were not different. Afterwards, ECC cycling exhibited lower RF EMG at 75 and 90% PPO (all p < 0.02), lower VL and BF EMG at all exercise intensities (all p < 0.02), and inferior SOL EMG (all p < 0.04) except at 45% PPO (p = 0.07). Perception of effort was lower in ECC cycling at all exercise intensities (all p < 0.03) but 60% PPO (p = 0.11). Conclusions: After four short sessions of ECC cycling, the activity of four leg muscles and perception of effort became lower in ECC than in CON cycling at most of five power outputs, while they were similar before.


Asunto(s)
Ciclismo , Ejercicio Físico , Pierna , Contracción Muscular , Músculo Esquelético , Esfuerzo Físico , Electromiografía , Humanos , Músculo Esquelético/metabolismo , Percepción
7.
Front Physiol ; 11: 934, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903490

RESUMEN

[This corrects the article on p. 354 in vol. 10, PMID: 30984032.].

8.
Eur J Appl Physiol ; 120(6): 1457-1469, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32347373

RESUMEN

PURPOSE: To examine corticospinal excitability and neuromuscular function following the completion of eccentric (ECC) or concentric (CON) maximal exercises of same mechanical work. METHODS: Ten males (29.9 ± 11.8 years) performed maximal isokinetic knee extensor contractions in four experimental sessions. The two first sessions (one in ECC and one in CON) ended with a dynamic peak torque loss of 20%. The work completed in each contraction type was then achieved in the other contraction type. Neuromuscular function- maximal voluntary isometric contraction (MVIC), voluntary activation level (VAL), potentiated doublet (Dt), M-wave- and corticospinal excitability- motor evoked potential (MEP) amplitude and silent period (SP)-were assessed in the vastus lateralis (VL) and rectus femoris (RF) muscles at 20% MVIC before and immediately after exercise. RESULTS: To lose 20% of dynamic peak torque subjects performed 1.8 times more work in ECC than CON (P = 0.03), inducing a non-different decline in MVIC (P = 0.15). VAL dropped after the ECC sessions only (- 8.5 ± 6.7%; all P < 0.027). Only, the CON session featuring the greatest work affected Dt amplitude (- 9.4 ± 23.8%; P = 0.047). In both muscles, MEP amplitude decreased (all P < 0.001) and MEP SP stayed constant (all P > 0.45), irrespective of contraction type (all P > 0.15). CONCLUSION: Same-work maximal ECC and CON exercises induced similar fatigue level but from different origins (preferentially central for ECC vs peripheral for CON). Yet, net corticospinal excitability did not depend on contraction type.


Asunto(s)
Potenciales Evocados Motores/fisiología , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Adolescente , Adulto , Electromiografía , Humanos , Contracción Isométrica/fisiología , Masculino , Músculo Esquelético/fisiología , Torque , Adulto Joven
10.
Front Physiol ; 10: 354, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984032

RESUMEN

OBJECTIVE: Eccentric (ECC) cycle-ergometers have recently become commercially-available, offering a novel method for rehabilitation training. Many studies have reported that ECC cycling enables the development of higher levels of muscular force at lower cardiorespiratory and metabolic loads, leading to greater force enhancements after a training period. However, fewer studies have focused on the specific perceptual and neuromuscular changes. As the two latter aspects are of major interest in clinical settings, this review aimed to present an overview of the current literature centered on the neuromuscular and perceptual responses to submaximal ECC cycling in comparison to concentric (CON) cycling. DESIGN: Narrative review of the literature. RESULTS: At a given mechanical workload, muscle activation is lower in ECC than in CON while the characteristics of the musculo-articular system (i.e., muscle-tendon unit, fascicle, and tendinous tissue length) are quite similar. At a given heart rate or oxygen consumption, ECC cycling training results in greater muscular hypertrophy and strength gains than CON cycling. On the contrary, CON cycling training seems to enhance more markers of muscle aerobic metabolism than ECC cycling performed at the same heart rate intensity. Data concerning perceptual responses, and neuromuscular mechanisms leading to a lower muscle activation (i.e., neural commands from cortex to muscular system) at a given mechanical workload are scarce. CONCLUSION: Even though ECC cycling appears to be a very useful tool for rehabilitation purposes the perceptual and neural commands from cortex to muscular system during exercise need to be further studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...