Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(9): 2126-2131, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349528

RESUMEN

The ability to monitor mechanical stresses and strains in polymers via an optical signal enables the investigation of deformation processes in such materials and is technologically useful for sensing damage and failure in critical components. We show here that this can be achieved by simply blending polymers of interest with a small amount of a mechanochromic luminescent additive (Py-PEB) that can be accessed in one step by end-functionalizing a telechelic poly(ethylene-co-butylene) (PEB) with excimer-forming pyrenes. Py-PEB is poorly miscible with polar polymers, such as poly(ε-caprolactone) and poly(urethane), so that blends undergo microphase separation even at low additive concentrations (0.1-1 wt%), and the emission is excimer-dominated. Upon deformation, the ratio of excimer-to-monomer emission intensity decreases in response to the applied stress or strain. The approach appears to be generalizable, although experiments with poly(isoprene) show that it is not universal and that the (in)solubility of the additive in the polymer must be carefully tuned.

2.
Mater Horiz ; 10(9): 3467-3475, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37350289

RESUMEN

The mechanical failure of polymers remains challenging to understand and predict, as it often involves highly localised phenomena that cannot be probed with bulk characterisation techniques. Here, we present a generalisable protocol based on optical microscopy, tensile testing, and image processing that permits the spatially resolved interrogation of mechanical deformation at the molecular level around defects in mechanophore-containing polymers. The approach can be applied to a broad range of polymeric materials, mechanophores, and deformation scenarios.

3.
Adv Sci (Weinh) ; 10(13): e2206416, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36935363

RESUMEN

Mechanochromic materials alter their color in response to mechanical force and are useful for both fundamental studies and practical applications. Several approaches are used to render polymers mechanochromic, but they generally suffer from limitations in sensing range, capacity to provide quantitative information, and their capability to enable broad and simple implementation. Here, is it reported that these problems can be overcome by combining photonic structures, which alter their reflection upon deformation, with covalent mechanophores, whose spectral properties change upon mechanically induced bond scission, in hierarchically structured mechanochromic pigments. This is achieved by synthesizing microspheres consisting of an elastic polymer with spiropyran-based cross-links and non-close-packed silica nanoparticles. A strain of less than 1% can be detected in a shift of the reflection band from the photonic structure, while the onset strain for the conversion of the spiropyran into fluorescent merocyanine ranges from 30% to 70%, creating a broad strain detection range. The two responses are tailorable and synergistic, permitting the activation strain for the mechanophore response to be tuned. The mechano-sensing photonic pigments are demonstrated to be readily incorporated into different polymeric materials of interest and quantitatively probe spatially heterogeneous deformations over a large strain range.

4.
Nat Microbiol ; 6(8): 1000-1006, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34211160

RESUMEN

Phytophthora species, classified as oomycetes, are among the most destructive plant pathogens worldwide and pose a substantial threat to food security. Plant pathogens have developed various methods to breach the cuticle and walls of plant cells. For example, plant-pathogenic fungi use a 'brute-force' approach by producing a specialized and fortified invasion organ to generate invasive pressures. Unlike in fungi, the biomechanics of host invasion in oomycetes remains poorly understood. Here, using a combination of surface-deformation imaging, molecular-fracture sensors and modelling, we find that Phytophthora infestans, Phytophthora palmivora and Phytophthora capsici slice through the plant surface to gain entry into host tissues. To distinguish this mode of entry from the brute-force approach of fungi that use appressoria, we name this oomycete entry without appressorium formation 'naifu' invasion. Naifu invasion relies on polarized, non-concentric, force generation onto the surface at an oblique angle, which concentrates stresses at the site of invasion to enable surface breaching. Measurements of surface deformations during invasion of artificial substrates reveal a polarized mechanical geometry that we describe using a mathematical model. We confirm that the same mode of entry is used on real hosts. Naifu invasion uses actin-mediated polarity, surface adherence and turgor generation to enable Phytophthora to invade hosts without requiring specialized organs or vast turgor generation.


Asunto(s)
Phytophthora infestans/fisiología , Enfermedades de las Plantas/parasitología , Interacciones Huésped-Patógeno , Plantas/parasitología
5.
Macromol Rapid Commun ; 42(1): e2000528, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33210385

RESUMEN

Mechanochromic effects in structurally colored materials are the result of deformation-induced changes to their ordered nanostructures. Polymeric materials which respond in this way to deformation offer an attractive combination of characteristics, including continuous strain sensing, high strain resolution, and a wide strain-sensing range. Such materials are potentially useful for a wide range of applications, which extend from pressure-sensing bandages to anti-counterfeiting devices. Focusing on the materials design aspects, recent developments in this field are summarized. The article starts with an overview of different approaches to achieve mechanochromic effects in structurally colored materials, before the physical principles governing the interaction of light with each of these materials types are summarized. Diverse methodologies to prepare these polymers are then discussed in detail, and where applicable, naturally occurring materials that inspired the design of artificial systems are discussed. The capabilities and limitations of structurally colored materials in reporting and visualizing mechanical deformation are examined from a general standpoint and also in more specific technological contexts. To conclude, current trends in the field are highlighted and possible future opportunities are identified.


Asunto(s)
Nanoestructuras , Polímeros
6.
Proc Natl Acad Sci U S A ; 115(37): 9110-9115, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30154166

RESUMEN

A classic paradigm of soft and extensible polymer materials is the difficulty of combining reversible elasticity with high fracture toughness, in particular for moduli above 1 MPa. Our recent discovery of multiple network acrylic elastomers opened a pathway to obtain precisely such a combination. We show here that they can be seen as true molecular composites with a well-cross-linked network acting as a percolating filler embedded in an extensible matrix, so that the stress-strain curves of a family of molecular composite materials made with different volume fractions of the same cross-linked network can be renormalized into a master curve. For low volume fractions (<3%) of cross-linked network, we demonstrate with mechanoluminescence experiments that the elastomer undergoes a strong localized softening due to scission of covalent bonds followed by a stable necking process, a phenomenon never observed before in elastomers. The quantification of the emitted luminescence shows that the damage in the material occurs in two steps, with a first step where random bond breakage occurs in the material accompanied by a moderate level of dissipated energy and a second step where a moderate level of more localized bond scission leads to a much larger level of dissipated energy. This combined use of mechanical macroscopic testing and molecular bond scission data provides unprecedented insight on how tough soft materials can damage and fail.

7.
Macromolecules ; 50(5): 2043-2053, 2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28316344

RESUMEN

A chemiluminescent mechanophore, bis(adamantyl-1,2-dioxetane), is used to investigate the covalent bond scission resulting from the sorption of chloroform by glassy poly(methyl methacrylate) (PMMA) networks. Bis(adamantyl)-1,2-dioxetane units incorporated as cross-linkers underwent mechanoluminescent scission, demonstrating that solvent ingress caused covalent bond scission. At higher cross-linking densities, the light emission took the form of hundreds of discrete bursts, widely varying in intensity, with each burst composed of 107-109 photons. Camera imaging indicated a relatively slow propagation of bursts through the material and permitted analysis of the spatial correlation between the discrete bond-breaking events. The implications of these observations for the mechanism of sorption and fracture are discussed.

8.
Angew Chem Int Ed Engl ; 55(4): 1445-9, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26663819

RESUMEN

Mechanophores capable of releasing N-heterocyclic carbene (NHC), a strong base, are combined with triggerable chemiluminescent substrates to give a novel system for mechanically induced chemiluminescence. The mechanophores are palladium bis-NHC complexes, centrally incorporated in poly(tetrahydrofuran) (pTHF). Chemiluminescence is induced from two substrates, adamantyl phenol dioxetane (APD) and a coumaranone derivative, upon sonication of dilute solutions of the polymer complex and either APD or the coumaranone. Control experiments with a low molecular weight Pd complex showed no significant activation and the molecular weight dependence of the coumaranone emission supports the mechanical origin of the activation. The development of this system is a first step towards mechanoluminescence at lower force thresholds and catalytic mechanoluminescence.

9.
Top Curr Chem ; 369: 209-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26104999

RESUMEN

The past 10 years have seen a resurgence of interest in the field of polymer mechanochemistry. Whilst the destructive effects of mechanical force on polymer chains have been known for decades, it was only recently that researchers tapped into these forces to realize more useful chemical transformations. The current review discusses the strategic incorporation of weak covalent bonds in polymers to create materials with stress-sensing and damage-repairing properties. Firstly, the development of mechanochromism and mechanoluminescence as stress reporters is considered. The second half focuses on the net formation of covalent bonds as a response to mechanical force, via mechanocatalysis and mechanically unmasked chemical reactivity, and concludes with perspectives for the field.

10.
Chemphyschem ; 15(16): 3565-71, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25145812

RESUMEN

Dioxetane-based force-induced light emission from polymers, or mechanoluminescence, is a powerful new way of characterizing the behavior of polymeric materials under stress. Here, we reveal that breaking the dioxetane mechanically gives strikingly similar products to those formed on thermal activation, with a singlet/triplet ratio of 1:9.9 and a total quantum yield of 9.8%. A sensitized relay scheme ensured high reproducibility in the detection of the short-lived triplet products. In addition to guiding the design of more sensitive mechanoluminescent probes, the similarity in the scission products indicates that once mechanical force releases the steric lock between the adamantyl groups, the dioxetane undergoes scission in a pathway that resembles the thermal process. Excited states are formed only after the main transition state in a region in which the excited- and ground-state surfaces are nearly degenerate, which, thus, accounts for the remarkable similarity in the scission products.


Asunto(s)
Oxepinas/química , Transferencia de Energía , Cetonas/química , Mediciones Luminiscentes , Fenómenos Mecánicos , Polímeros/química , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...