Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 26(7): 107228, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485372

RESUMEN

Transcription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules. The FoxP subfamily of transcription factors in humans is unique because they can form heterotypic interactions without DNA. However, it is unclear how they form heterodimers and how DNA binding affects their function. We used computational and experimental methods to study the structural changes in FoxP1's DNA-binding domain when it forms a heterodimer with FoxP2. We found that FoxP1 has complex and diverse conformational dynamics, transitioning between compact and extended states. Surprisingly, DNA binding increases the flexibility of FoxP1, contrary to the typical folding-upon-binding mechanism. In addition, we observed a 3-fold increase in the rate of heterodimerization after FoxP1 binds to DNA. These findings emphasize the importance of structural flexibility in promoting heterodimerization to form transcriptional complexes.

2.
Sci Rep ; 10(1): 15986, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973174

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 5441, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931977

RESUMEN

Forkhead box P (FoxP) proteins are members of the versatile Fox transcription factors, which control the timing and expression of multiple genes for eukaryotic cell homeostasis. Compared to other Fox proteins, they can form domain-swapped dimers through their DNA-binding -forkhead- domains, enabling spatial reorganization of distant chromosome elements by tethering two DNA molecules together. Yet, domain swapping stability and DNA binding affinity varies between different FoxP proteins. Experimental evidence suggests that the protonation state of a histidine residue conserved in all Fox proteins is responsible for pH-dependent modulation of these interactions. Here, we explore the consequences of the protonation state of another histidine (H59), only conserved within FoxM/O/P subfamilies, on folding and dimerization of the forkhead domain of human FoxP1. Dimer dissociation kinetics and equilibrium unfolding experiments demonstrate that protonation of H59 leads to destabilization of the domain-swapped dimer due to an increase in free energy difference between the monomeric and transition states. This pH-dependence is abolished when H59 is mutated to alanine. Furthermore, anisotropy measurements and molecular dynamics evidence that H59 has a direct impact in the local stability of helix H3. Altogether, our results highlight the relevance of H59 in domain swapping and folding stability of FoxP1.


Asunto(s)
Evolución Biológica , Factores de Transcripción Forkhead/metabolismo , Histidina/metabolismo , Proteínas Represoras/metabolismo , Histidina/química , Humanos , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA