Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am Nat ; 203(2): 189-203, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306279

RESUMEN

AbstractAnimals can form dominance relationships that vary from highly unequal, or despotic, to egalitarian, and this variation likely impacts the fitness of individuals. How and why these differences in relationships and fitness exist among groups, populations, and species has been the subject of much debate. Here, we investigated the influence of two major factors: (1) spatial resource distribution and (2) the presence or absence of winner-loser effects. To determine the effects of these factors, we built an agent-based model that represented 10 agents directly competing over food resources on a simple landscape. By varying the food distribution and using either asymmetry of strength or experience, we contrasted four scenarios from which we recorded attack decisions, fight outcomes, and individual energy intake to calculate dominance hierarchy steepness and energetic skew. Surprisingly, resource distribution and winner-loser effects did not have the predicted effects on hierarchy steepness. However, skew in energy intake arose when resources were distributed heterogeneously, despite hierarchy steepness frequently being higher in the homogeneous resource scenarios. Thus, this study confirms some decades-old predictions about feeding competition but also casts doubt on the ability to infer energetic consequences from observations of agonistic interactions.


Asunto(s)
Ecología , Predominio Social , Humanos , Alimentos
2.
R Soc Open Sci ; 11(1): 231147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234432

RESUMEN

The Norway lobster, Nephrops norvegicus, is an important representative of the benthos and also supports valuable fisheries across Europe. Nephrops are susceptible to infection by Hematodinium sp., an endoparasitic dinoflagellate that causes morbidity and mortality. From an epizootiological perspective, the Clyde Sea Area (CSA; west of Scotland) is the best-studied Hematodinium-Nephrops pathosystem, with historical data available between 1988 and 2008. We have revisited this pathosystem by curating and updating prevalence values, differentiating host traits associated with disease exposure and progression, and comparing Hematodinium sp. disease dynamics in the CSA to other locations and to other decapod hosts (Cancer pagurus, Carcinus maenas). Prevalence from a 2018/2019 survey (involving 1739 lobsters) revealed Hematodinium sp. still mounts a synchronized patent infection in the CSA; hence this pathogen can be considered as enzootic in this location. We highlight for the first time that Nephrops size is associated with high severity infection, while females are more exposed to Hematodinium sp. More generally, regardless of the host (Norway lobster, brown and shore crabs) or the geographical area (Ireland, Wales, Scotland), Hematodinium sp. patent infections peak in spring/summer and reach their nadir during autumn. We contend that Hematodinium must be considered one of the most important pathogens of decapod crustaceans in temperate waters.

3.
Geobiology ; 22(1): e12577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37750460

RESUMEN

Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635-560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957-1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.


Asunto(s)
Oxígeno , Vertebrados , Animales , Oxígeno/metabolismo , Teorema de Bayes , Vertebrados/metabolismo , Hipoxia , Filogenia , Evolución Biológica , Fósiles
4.
Dis Aquat Organ ; 153: 69-79, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36861899

RESUMEN

Two populations of the invasive slipper limpet Crepidula fornicata were sampled in Swansea Bay and Milford Haven, Wales, UK, to determine the presence of putative pathogens and parasites known to affect co-located commercially important shellfish (e.g. oysters). A multi-resource screen, including molecular and histological diagnoses, was used to assess 1800 individuals over 12 mo for microparasites, notably haplosporidians, microsporidians and paramyxids. Although initial PCR-based methods suggested the presence of these microparasites, there was no evidence of infection when assessed histologically, or when all PCR amplicons (n = 294) were sequenced. Whole tissue histology of 305 individuals revealed turbellarians in the lumen of the alimentary canal, in addition to unusual cells of unknown origin in the epithelial lining. In total, 6% of C. fornicata screened histologically harboured turbellarians, and approximately 33% contained the abnormal cells-so named due to their altered cytoplasm and condensed chromatin. A small number of limpets (~1%) also had pathologies in the digestive gland including tubule necrosis, haemocytic infiltration and sloughed cells in the tubule lumen. Overall, these data suggest that C. fornicata are not susceptible to substantive infections by microparasites outside of their native range, which may contribute in part to their invasion success.


Asunto(s)
Gastrópodos , Haplosporidios , Microsporidios , Parásitos , Animales , Hemocitos
5.
Sci Total Environ ; 876: 162742, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906041

RESUMEN

Larvae of the greater wax moth Galleria mellonella are common pests of beehives and commercial apiaries, and in more applied settings, these insects act as alternative in vivo bioassays to rodents for studying microbial virulence, antibiotic development, and toxicology. In the current study, our aim was to assess the putative adverse effects of background gamma radiation levels on G. mellonella. To achieve this, we exposed larvae to low (0.014 mGy/h), medium (0.056 mGy/h), and high (1.33 mGy/h) doses of caesium-137 and measured larval pupation events, weight, faecal discharge, susceptibility to bacterial and fungal challenges, immune cell counts, activity, and viability (i.e., haemocyte encapsulation) and melanisation levels. The effects of low and medium levels of radiation were distinguishable from the highest dose rates used - the latter insects weighed the least and pupated earlier. In general, radiation exposure modulated cellular and humoral immunity over time, with larvae showing heightened encapsulation/melanisation levels at the higher dose rates but were more susceptible to bacterial (Photorhabdus luminescens) infection. There were few signs of radiation impacts after 7 days exposure, whereas marked changes were recorded between 14 and 28 days. Our data suggest that G. mellonella demonstrates plasticity at the whole organism and cellular levels when irradiated and offers insight into how such animals may cope in radiologically contaminated environments (e.g. Chornobyl Exclusion Zone).


Asunto(s)
Mariposas Nocturnas , Animales , Larva , Rayos gamma/efectos adversos , Antibacterianos , Virulencia
6.
J Invertebr Pathol ; 198: 107899, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36806465

RESUMEN

For humans, acute and chronic overexposure to ultraviolet (UV) radiation can cause tissue damage in the form of sunburn and promote cancer(s). The immune-modulating properties of UV radiation and health-related consequences are not well known. Herein, we used the larvae of the wax moth Galleria mellonella, to determine UV-driven changes in cellular components of innate immunity. From immune cell (haemocyte) reactivity and the production of antimicrobial factors, these insects share many functional similarities with mammalian cellular innate immunity. After exposing insects to UVA or UVB for up to two hours, we monitored larval viability, susceptibility to infection, haemolymph (blood) physiology and faecal discharge. Prolonged exposure of larvae to UVB coincided with decreased survival, enhanced susceptibility to bacterial challenge, melanin synthesis in the haemolymph, compromised haemocyte functionality and changes in faecal (bacterial) content. We contend G. mellonella is a reliable in vivo model for assessing the impact of UV exposure at the whole organism and cellular levels.


Asunto(s)
Mariposas Nocturnas , Rayos Ultravioleta , Humanos , Animales , Mariposas Nocturnas/microbiología , Larva/microbiología , Insectos , Inmunidad Innata , Mamíferos
7.
Virulence ; 14(1): 2180932, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36813781

RESUMEN

Epizootiologists recurrently encounter symbionts and pathobionts in the haemolymph (blood equivalent) of shellfish. One such group is the dinoflagellate genus Hematodinium, which contains several species that cause debilitating disease in decapod crustaceans. The shore crab Carcinus maenas acts as a mobile reservoir of microparasites, including Hematodinium sp., thereby posing a risk to other co-located commercially important species, e.g. velvet crabs (Necora puber). Despite the widespread prevalence and documented seasonality of Hematodinium infection dynamics, there is a knowledge gap regarding host-pathogen antibiosis, namely, how Hematodinium avoids the host's immune defences. Herein, we interrogated the haemolymph of Hematodinium-positive and Hematodinium-negative crabs for extracellular vesicle (EV) profiles (a proxy for cellular communication), alongside proteomic signatures for post-translational citrullination/deimination performed by arginine deiminases, which can infer a pathologic state. Circulating EV numbers in parasitized crab haemolymph were reduced significantly, accompanied by smaller EV modal size profiles (albeit non-significantly) when compared to Hematodinium-negative controls. Differences were observed for citrullinated/deiminated target proteins in the haemolymph between the parasitized and control crabs, with fewer hits identified overall in the former. Three deiminated proteins specific to parasitized crab haemolymph were actin, Down syndrome cell adhesion molecule (DSCAM), and nitric oxide synthase - factors that contribute to innate immunity. We report, for the first time, Hematodinium sp. could interfere with EV biogenesis, and that protein deimination is a putative mechanism of immune-modulation in crustacean-Hematodinium interactions.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Citrulinación , Proteómica , Hemolinfa
8.
Environ Microbiol ; 25(5): 931-947, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36708190

RESUMEN

The term shell disease subsumes a number of debilitating conditions affecting the outer integument (the carapace) of decapod crustaceans, such as lobsters and crabs. Herein, we seek to find commonality in the aetiology and pathology of such conditions, and those cases that result in the progressive erosion of the cuticle through to the visceral tissues by a cocktail of microbial-derived enzymes including lipases, proteases and chitinases. Aquimarina spp. are involved in shell disease in many different crustaceans across a wide geographical area, but the overall view is that the condition is polymicrobial in nature leading to dysbiosis within the microbial consortium of the damaged cuticle. The role of environment, decapod behaviour and physiology in triggering this disease is also reviewed. Finally, we provide a conceptual model for disease aetiology and suggest several avenues for future research that could improve our understanding of how such factors trigger, or exacerbate, this condition.


Asunto(s)
Decápodos , Animales , Síndrome , Decápodos/fisiología , Ambiente
9.
Microb Pathog ; 175: 105958, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36572197

RESUMEN

Bacillus thuringiensis (Bt) is one of the most common entomopathogenic bacteria used as a biopesticide, and source of endotoxin genes for generating insect-resistant transgenic plants. The mechanisms underpinning an insect's susceptibility or resistance to B. thuringiensis are diverse. The bacterial lifecycle does not end with the death of a host, they continue to exploit the cadaver to reproduce and sporulate. Herein, we studied the progression of B. thuringiensis subsp. galleriae infection in two populations of wax moth larvae (Galleria mellonella) to gain further insight into the "arms race" between B. thuringiensis virulence and insect defences. Two doses of B. thuringiensis subsp. galleriae (spore and crystalline toxin mixtures) were administered orally to compare the responses of susceptible (S) and resistant (R) populations at ∼30% mortality each. To investigate B. thuringiensis-insect antibiosis, we used a combination of in vivo infection trials, bacterial microbiome analysis, and RNAi targeting the antibacterial peptide gloverin. Within 48 h post-inoculation, B. thuringiensis-resistant insects purged the midgut of bacteria, i.e., colony forming unit numbers fell below detectable levels. Second, B. thuringiensis rapidly modulated gene expression to initiate sporulation (linked to quorum sensing) when exposed to resistant insects in contrast to susceptible G. mellonella. We reinforce earlier findings that elevated levels of antimicrobial peptides, specifically gloverin, are found in the midgut of resistant insects, which is an evolutionary strategy to combat B. thuringiensis infection via its main portal of entry. A sub-population of highly virulent B. thuringiensis can survive the enhanced immune defences of resistant G. mellonella by disrupting the midgut microbiome and switching rapidly to a necrotrophic strategy, prior to sporulation in the cadaver.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/metabolismo , Mariposas Nocturnas/microbiología , Insectos/microbiología , Larva/microbiología , Sistema Digestivo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
10.
Biol Bull ; 243(2): 85-103, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548975

RESUMEN

AbstractOxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two-warming and acidification-that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume ("An Oxygen Perspective on Climate Change"), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Animales , Evolución Biológica , Oxígeno , Estrés Fisiológico , Ecosistema
11.
Biol Bull ; 243(2): 134-148, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548976

RESUMEN

AbstractPredictions for climate change-to lesser and greater extents-reveal a common scenario in which marine waters are characterized by a deadly trio of stressors: higher temperatures, lower oxygen levels, and acidification. Ectothermic taxa that inhabit coastal waters, such as shellfish, are vulnerable to rapid and prolonged environmental disturbances, such as heatwaves, pollution-induced eutrophication, and dysoxia. Oxygen transport capacity of the hemolymph (blood equivalent) is considered the proximal driver of thermotolerance and respiration in many invertebrates. Moreover, maintaining homeostasis under environmental duress is inextricably linked to the activities of the hemolymph-based oxygen transport or binding proteins. Several protein groups fulfill this role in marine invertebrates: copper-based extracellular hemocyanins, iron-based intracellular hemoglobins and hemerythrins, and giant extracellular hemoglobins. In this brief text, we revisit the distribution and multifunctional properties of oxygen transport proteins, notably hemocyanins, in the context of climate change, and the consequent physiological reprogramming of marine invertebrates.


Asunto(s)
Proteínas Portadoras , Hemocianinas , Animales , Proteínas Portadoras/metabolismo , Oxígeno , Temperatura , Invertebrados/metabolismo , Hemoglobinas/metabolismo , Organismos Acuáticos/metabolismo , Relación Estructura-Actividad
12.
J Fungi (Basel) ; 8(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35448558

RESUMEN

Fungal volatile organic compounds (VOCs) represent promising candidates for biopesticide fumigants to control crop pests and pathogens. Herein, VOCs produced using three strains of the entomopathogenic fungus Metarhizium brunneum were identified via GC-MS and screened for antimicrobial activity. The VOC profiles varied with fungal strain, development state (mycelium, spores) and culture conditions. Selected VOCs were screened against a range of rhizosphere and non-rhizosphere microbes, including three Gram-negative bacteria (Escherichia coli, Pantoea agglomerans, Pseudomonas aeruginosa), five Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, B. megaterium, B. thuringiensis), two yeasts (Candida albicans, Candida glabrata) and three plant pathogenic fungi (Pythium ultimum, Botrytis cinerea, Fusarium graminearum). Microbes differed in their sensitivity to the test compounds, with 1-octen-3-ol and isovaleric acid showing broad-spectrum antimicrobial activity. Yeasts and bacteria were inhibited by the same VOCs. Cryo-SEM showed that both yeasts and bacteria underwent some form of "autolysis", where all components of the cell, including the cell wall, disintegrated with little evidence of their presence in the clear, inhibition zone. The oomycete (P. ultimum) and ascomycete fungi (F. graminearum, B. cinerea) were sensitive to a wider range of VOCs than the bacteria, suggesting that eukaryotic microbes are the main competitors to M. brunneum in the rhizosphere. The ability to alter the VOC profile in response to nutritional cues may assist M. brunneum to survive among the roots of a wide range of plant species. Our VOC studies provided new insights as to how M. brunneum may protect plants from pathogenic microbes and correspondingly promote healthy growth.

13.
J Anat ; 241(2): 211-229, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35357006

RESUMEN

Brain and skull tissues interact through molecular signalling and mechanical forces during head development, leading to a strong correlation between the neurocranium and the external brain surface. Therefore, when brain tissue is unavailable, neurocranial endocasts are often used to approximate brain size and shape. Evolutionary changes in brain morphology may have resulted in secondary changes to neurocranial morphology, but the developmental and genetic processes underlying this relationship are not well understood. Using automated phenotyping methods, we quantified the genetic basis of endocast variation across large genetically varied populations of laboratory mice in two ways: (1) to determine the contributions of various genetic factors to neurocranial form and (2) to help clarify whether a neurocranial variation is based on genetic variation that primarily impacts bone development or on genetic variation that primarily impacts brain development, leading to secondary changes in bone morphology. Our results indicate that endocast size is highly heritable and is primarily determined by additive genetic factors. In addition, a non-additive inbreeding effect led to founder strains with lower neurocranial size, but relatively large brains compared to skull size; suggesting stronger canalization of brain size and/or a general allometric effect. Within an outbred sample of mice, we identified a locus on mouse chromosome 1 that is significantly associated with variation in several positively correlated endocast size measures. Because the protein-coding genes at this locus have been previously associated with brain development and not with bone development, we propose that genetic variation at this locus leads primarily to variation in brain volume that secondarily leads to changes in neurocranial globularity. We identify a strain-specific missense mutation within Akt3 that is a strong causal candidate for this genetic effect. Whilst it is not appropriate to generalize our hypothesis for this single locus to all other loci that also contribute to the complex trait of neurocranial skull morphology, our results further reveal the genetic basis of neurocranial variation and highlight the importance of the mechanical influence of brain growth in determining skull morphology.


Asunto(s)
Encéfalo , Cráneo , Animales , Evolución Biológica , Encéfalo/anatomía & histología , Cabeza , Ratones , Cráneo/anatomía & histología
14.
Parasitology ; : 1-9, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35331356

RESUMEN

Invasion and spread of alien species can drive ecosystem changes, such as, the dynamics of infectious diseases. The non-native, marine gastropod Crepidula fornicata has become established across European coastlines over the last century, but there remains little insight into its disease carrying capacity and potential role as a source/sink of parasites. To address this knowledge gap, we surveyed limpets from two sites in South Wales, UK for signatures of disease/pathology using polymerase chain reaction-based methods (haemolymph) and histology (solid tissue). We encountered trematode-like parasites in ~1% individuals (5 out of 462). Three limpets displayed gross damage in the gonad, i.e. castration, and encysted metacercariae were found in the muscle of two other individuals. On the basis of 28S rDNA and internal transcribed spacer 2 genomic targets, we identified the gonad-infecting trematodes as members of the family Microphallidae ­ putative novel species related to the genus Longiductotrema. Earlier reports suggest that C. fornicata is not a host for trematode parasites in either its native or alien range but may act as a sink due to its filter feeding lifestyle. We provide clear evidence that C. fornicata is parasitized by at least one trematode species at two sites in Wales, UK, and likely act as a spillback or accidental host among native littorinids.

15.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179494

RESUMEN

Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally - considered to suppress the innate defences of hosts, making them more susceptible to co-infections. Evidence supporting immune suppression is largely anecdotal and sourced from diffuse accounts of compromised decapods. We used a population of shore crabs (Carcinus maenas), where Hematodinium sp. is endemic, to determine the extent of collateral infections across two distinct environments (open-water, semi-closed dock). Using a multi-resource approach (PCR, histology, haematology, population genetics, eDNA), we identified 162 Hematodinium-positive crabs and size/sex-matched these to 162 Hematodinium-free crabs out of 1191 analysed. Crabs were interrogated for known additional disease-causing agents; haplosporidians, microsporidians, mikrocytids, Vibrio spp., fungi, Sacculina, trematodes, and haemolymph bacterial loads. We found no significant differences in occurrence, severity, or composition of collateral infections between Hematodinium-positive and Hematodinium-free crabs at either site, but crucially, we recorded site-restricted blends of pathogens. We found no gross signs of host cell immune reactivity towards Hematodinium in the presence or absence of other pathogens. We contend Hematodinium sp. is not the proximal driver of co-infections in shore crabs, which suggests an evolutionary drive towards latency in this environmentally plastic host.


Asunto(s)
Braquiuros/parasitología , Dinoflagelados/fisiología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Braquiuros/inmunología , Braquiuros/microbiología , Femenino , Helmintos/clasificación , Helmintos/aislamiento & purificación , Interacciones Huésped-Patógeno , Masculino
16.
Geobiology ; 20(3): 333-345, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34766436

RESUMEN

The Neoproterozoic included changes in oceanic redox conditions, the configuration of continents and climate, extreme ice ages (Sturtian and Marinoan), and the rise of complex life forms. A much-debated topic in geobiology concerns the influence of atmospheric oxygenation on Earth and the origin and diversification of animal lineages, with the most widely popularized hypotheses relying on causal links between oxygen levels and the rise of animals. The vast majority of extant animals use aerobic metabolism for growth and homeostasis; hence, the binding and transportation of oxygen represent a vital physiological task. Considering the blood pigment hemocyanin (Hc) is present in sponges and ctenophores, and likely to be present in the common ancestor of animals, we investigated the evolution and date of Hc emergence using bioinformatics approaches on both transcriptomic and genomic data. Bayesian molecular dating suggested that the ancestral animal Hc gene arose approximately 881 Ma during the Tonian Period (1000-720 Ma), prior to the extreme glaciation events of the Cryogenian Period (720-635 Ma). This result is corroborated by a recently discovered fossil of a putative sponge ~890 Ma and modern molecular dating for the origin of metazoans of ~1,000-650 Ma (but does contradict previous inferences regarding the origin of Hc ~700-600 Ma). Our data reveal that crown-group animals already possessed hemocyanin-like blood pigments, which may have enhanced the oxygen-carrying capacity of these animals in hypoxic environments at that time or acted in the transport of hormones, detoxification of heavy metals, and immunity pathways.


Asunto(s)
Fósiles , Hemocianinas , Animales , Teorema de Bayes , Océanos y Mares , Oxígeno/análisis , Filogenia
17.
Toxins (Basel) ; 13(11)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34822531

RESUMEN

The insect integument (exoskeleton) is an effective physiochemical barrier that limits disease-causing agents to a few portals of entry, including the gastrointestinal and reproductive tracts. The bacterial biopesticide Bacillus thuringiensis (Bt) enters the insect host via the mouth and must thwart gut-based defences to make its way into the body cavity (haemocoel) and establish infection. We sought to uncover the main antibacterial defences of the midgut and the pathophysiological features of Bt in a notable insect pest, the Colorado potato beetle Leptinotarsa decemlineata (CPB). Exposing the beetles to both Bt spores and their Cry3A toxins (crystalline δ-endotoxins) via oral inoculation led to higher mortality levels when compared to either spores or Cry3A toxins alone. Within 12 h post-exposure, Cry3A toxins caused a 1.5-fold increase in the levels of reactive oxygen species (ROS) and malondialdehyde (lipid peroxidation) within the midgut - key indicators of tissue damage. When Cry3A toxins are combined with spores, gross redox imbalance and 'oxidation stress' is apparent in beetle larvae. The insect detoxification system is activated when Bt spores and Cry3A toxins are administered alone or in combination to mitigate toxicosis, in addition to elevated mRNA levels of candidate defence genes (pattern-recognition receptor, stress-regulation, serine proteases, and prosaposin-like protein). The presence of bacterial spores and/or Cry3A toxins coincides with subtle changes in microbial community composition of the midgut, such as decreased Pseudomonas abundance at 48 h post inoculation. Both Bt spores and Cry3A toxins have negative impacts on larval health, and when combined, likely cause metabolic derangement, due to multiple tissue targets being compromised.


Asunto(s)
Toxinas de Bacillus thuringiensis/fisiología , Bacillus thuringiensis/fisiología , Escarabajos/microbiología , Endotoxinas/fisiología , Proteínas Hemolisinas/fisiología , Control de Insectos , Control Biológico de Vectores , Esporas Bacterianas/fisiología , Animales , Escarabajos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Longevidad
18.
PLoS One ; 16(10): e0259205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34705877

RESUMEN

Phenolic compounds are chemical precursor building blocks of soil organic matter. Their occurrence can be inhibitory to certain enzymes present in soil, thereby influencing the rate of decomposition of soil organic matter. Microbe-derived phenoloxidases (laccases) are extracellular enzymes capable of degrading recalcitrant polyphenolic compounds. In this study, our aim was to investigate the relationships between phenoloxidase enzyme activity, organic carbon content and microbial abundance in the context of long-term anthropogenically amended soils. To achieve this, we used a series of complementary biochemical analytical methods including gas chromatography, enzyme assays and solid-state Carbon-13 Cross Polarisation Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy (13C CPMAS NMR). Using several anthrosols found in St Andrews (Scotland, UK) that had been subjected to intense anthropogenic modification since the medieval period (11th century AD) to present-day, we were able to scope the impact of past waste disposal on soils. The long-term anthropogenic impact led to organic matter-rich soils. Overall, phenoloxidase activity increased by up to 2-fold with soil depth (up to 100 cm) and was inversely correlated with microbial biomass. Solid-state 13C NMR characterisation of carbon species revealed that the observed decline in soil organic matter with depth corresponded to decreases in the labile organic carbon fractions as evidenced by changes in the O/N-alkyl C region of the spectra. The increase in phenoloxidase activity with depth would appear to be a compensatory mechanism for the reduced quantities of organic carbon and lower overall nutrient environment in subsoils. By enzymatically targeting phenolic compounds, microbes can better utilise recalcitrant carbon when other labile soil carbon sources become limited, thereby maintaining metabolic processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Monofenol Monooxigenasa/metabolismo , Polifenoles/análisis , Microbiología del Suelo , Suelo/química , Carbono/análisis , Carbono/metabolismo , Lacasa/metabolismo , Microbiota , Polifenoles/metabolismo
19.
Sci Rep ; 11(1): 15744, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344935

RESUMEN

The biological toolkits for aerobic respiration were critical for the rise and diversification of early animals. Aerobic life forms generate ATP through the oxidation of organic molecules in a process known as Krebs' Cycle, where the enzyme isocitrate dehydrogenase (IDH) regulates the cycle's turnover rate. Evolutionary reconstructions and molecular dating of proteins related to oxidative metabolism, such as IDH, can therefore provide an estimate of when the diversification of major taxa occurred, and their coevolution with the oxidative state of oceans and atmosphere. To establish the evolutionary history and divergence time of NAD-dependent IDH, we examined transcriptomic data from 195 eukaryotes (mostly animals). We demonstrate that two duplication events occurred in the evolutionary history of NAD-IDH, one in the ancestor of eukaryotes approximately at 1967 Ma, and another at 1629 Ma, both in the Paleoproterozoic Era. Moreover, NAD-IDH regulatory subunits ß and γ are exclusive to metazoans, arising in the Mesoproterozoic. Our results therefore support the concept of an ''earlier-than-Tonian'' diversification of eukaryotes and the pre-Cryogenian emergence of a metazoan IDH enzyme.


Asunto(s)
Eucariontes/enzimología , Evolución Molecular , Isocitrato Deshidrogenasa/metabolismo , NADP/metabolismo , NAD/metabolismo , Transcriptoma , Animales , Respiración de la Célula , Ciclo del Ácido Cítrico , Eucariontes/genética , Eucariontes/crecimiento & desarrollo , Isocitrato Deshidrogenasa/genética , Filogenia
20.
Arch Toxicol ; 95(10): 3361-3376, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374792

RESUMEN

Diarrhetic shellfish-poisoning (DSP) toxins such as okadaic acid and dinophysistoxins harm the human gastrointestinal tract, and therefore, their levels are regulated to an upper limit of 160 µg per kg tissue to protect consumers. Rodents are used routinely for risk assessment and studies concerning mechanisms of toxicity, but there is a general move toward reducing and replacing vertebrates for these bioassays. We have adopted insect larvae of the wax moth Galleria mellonella as a surrogate toxicology model. We treated larvae with environmentally relevant doses of okadaic acid (80-400 µg/kg) via intrahaemocoelic injection or gavage to determine marine toxin-related health decline: (1) whether pre-exposure to a sub-lethal dose of toxin (80 µg/kg) enhances susceptibility to bacterial infection, or (2) alters tissue pathology and bacterial community (microbiome) composition of the midgut. A sub-lethal dose of okadaic acid (80 µg/kg) followed 24 h later by bacterial inoculation (2 × 105 Escherichia coli) reduced larval survival levels to 47%, when compared to toxin (90%) or microbial challenge (73%) alone. Histological analysis of the midgut depicted varying levels of tissue disruption, including nuclear aberrations associated with cell death (karyorrhexis, pyknosis), loss of organ architecture, and gross epithelial displacement into the lumen. Moreover, okadaic acid presence in the midgut coincided with a shift in the resident bacterial population over time in that substantial reductions in diversity (Shannon) and richness (Chao-1) indices were observed at 240 µg toxin per kg. Okadaic acid-induced deterioration of the insect alimentary canal resembles those changes reported for rodent bioassays.


Asunto(s)
Disbiosis/etiología , Infecciones por Escherichia coli/etiología , Ácido Ocadaico/toxicidad , Pruebas de Toxicidad/métodos , Animales , Bioensayo , Susceptibilidad a Enfermedades , Relación Dosis-Respuesta a Droga , Disbiosis/patología , Escherichia coli/aislamiento & purificación , Larva/efectos de los fármacos , Mariposas Nocturnas , Ácido Ocadaico/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...