Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 375(6584): abe0725, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239372

RESUMEN

Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Restauración y Remediación Ambiental , Microbiota , Micorrizas/fisiología , Microbiología del Suelo , Suelo , Interacciones Microbiota-Huesped , Hidrología , Plantas/microbiología
2.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33579680

RESUMEN

Microbial mats, due to stratification of the redox zones, have a potential to include a complete N cycle, however an attempt to evaluate a complete N cycle in these ecosystems has not been yet made. In this study, occurrence and rates of major N cycle processes were evaluated in intact microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico under oxic and anoxic conditions using 15N-labeling techniques. All of the major N transformation pathways, with the exception of anammox, were detected in both microbial mats. Nitrification rates were found to be low at both sites for both seasons investigated. The highest rates of ammonium assimilation were measured in Elkhorn Slough mats in April and corresponded to high in situ ammonium concentration in the overlying water. Baja mats featured higher ammonification than ammonium assimilation rates and this, along with their higher affinity for nitrate compared to ammonium and low dissimilatory nitrate reduction to ammonium rates, characterized their differences from Elkhorn Slough mats. Nitrogen fixation rates in Elkhorn Slough microbial mats were found to be low implying that other processes such as recycling and assimilation from water are main sources of N for these mats at the times sampled. Denitrification in all of the mats was incomplete with nitrous oxide as end product and not dinitrogen. Our findings highlight N cycling features not previously quantified in microbial mats and indicate a need of further investigations in these microbial ecosystems.Importance: Nitrogen is essential for life. The nitrogen cycle on Earth is mediated by microbial activity and has had a profound impact on both the atmosphere and the biosphere throughout geologic time. Microbial mats, present in many modern environments, have been regarded as living records of the organisms, genes, and phylogenies of microbes, as they are one of the most ancient ecosystems on Earth. While rates of major nitrogen metabolic pathways have been evaluated in a number of ecosystems, it remains elusive in microbial mats. In particular it is unclear what factors affect nitrogen cycling in these ecosystems and how morphological differences between mats impact nitrogen transformations. In this study we investigate nitrogen cycling in two microbial mats having morphological differences. Our findings provide insight for further understanding of biogeochemistry and microbial ecology of microbial mats.

3.
Water Res ; 147: 373-381, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30326399

RESUMEN

Microbial mats, due to their high microbial diversity, have the potential to express most biogeochemical cycling processes, highlighting their prospective use in bioremediation of various environmental contaminants. In this study the mechanisms of nitrogen attenuation were investigated in naturally occurring microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico. Key processes responsible for this removal were evaluated using quantification of functional genes related to nitrification, denitrification, and nitrogen fixation. Both microbial mats were capable of removing high (up to 2 mM) concentrations of ammonium and nitrate. Ammonium assimilation rates measured for Elkhorn Slough mats showed that this process was responsible for most of the ammonium uptake in these mats. While Elkhorn Slough mats did not show any evidence of nitrogen removal pathways other than microbial assimilation, Baja mats exhibited the potential for nitrification, denitrification, and DNRA as well as assimilation. The results of this study demonstrate the potential of microbial mats for bioremediation of nitrogenous pollutants independent of the mechanisms responsible for their removal.


Asunto(s)
Nitrificación , Nitrógeno , Desnitrificación , México , Nitratos , Estudios Prospectivos , Agua de Mar
4.
Water Res ; 74: 203-12, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25744184

RESUMEN

Constructed wetlands are important ecosystems with respect to nitrogen cycling. Here we studied the activity and abundance of nitrogen transforming bacteria as well as the spatial distribution of nitrification, anaerobic ammonium oxidation (anammox), and denitrification processes in a horizontal subsurface-flow constructed wetland. The functional genes of the nitrogen cycle were evenly distributed in a linear way along the flow path with prevalence at the superficial points. The same trend was observed for the nitrification and denitrification turnover rates using isotope labeling techniques. It was also shown that only short-term incubations should be used to measure denitrification turnover rates. Significant nitrate consumption under aerobic conditions diminishes nitrification rates and should therefore be taken into account when estimating nitrification turnover rates. This nitrate consumption was due to aerobic denitrification, the rate of which was comparable to that for anaerobic denitrification. Consequently, denitrification should not be considered as an exclusively anaerobic process. Phylogenetic analysis of hydrazine synthase (hzsA) gene clones indicated the presence of Brocadia and Kuenenia anammox species in the constructed wetland. Although anammox bacteria were detected by molecular methods, anammox activity could not be measured and hence this process appears to be of low importance in nitrogen transformations in these freshwater ecosystems.


Asunto(s)
Amoníaco/metabolismo , Bacterias/metabolismo , Desnitrificación , Agua Subterránea/química , Nitrógeno/metabolismo , Humedales , Aerobiosis , Anaerobiosis , Bacterias/genética , Genes Bacterianos , Filogenia , Análisis de Secuencia de ADN , Eliminación de Residuos Líquidos/métodos , Contaminación Química del Agua , Purificación del Agua/métodos
5.
Environ Sci Pollut Res Int ; 22(17): 12829-39, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233917

RESUMEN

Pathways of ammonium (NH4 (+)) removal were investigated using the stable isotope approach in constructed wetlands (CWs). We investigated and compared several types of CWs: planted horizontal subsurface flow (HSSF), unplanted HSSF, and floating plant root mat (FPRM), including spatial and seasonal variations. Plant presence was the key factor influencing efficiency of NH4 (+) removal in all CWs, what was illustrated by lower NH4 (+)-N removal by the unplanted HSSF CW in comparison with planted CWs. No statistically significant differences in NH4 (+) removal efficiencies between seasons were detected. Even though plant uptake accounted for 32-100 % of NH4 (+) removal during spring and summer in planted CWs, throughout the year, most of NH4 (+) was removed via simultaneous nitrification-denitrification, what was clearly shown by linear increase of δ(15)N-NH4 (+) with decrease of loads along the flow path and absence of nitrate (NO3 (-)) accumulation. Average yearly enrichment factor for nitrification was -7.9 ‰ for planted HSSF CW and -5.8 ‰ for FPRM. Lack of enrichment for δ(15)N-NO3 (-) implied that other processes, such as nitrification and mineralization were superimposed on denitrification and makes the stable isotope approach unsuitable for the estimation of denitrification in the systems obtaining NH4 (+) rich inflow water.


Asunto(s)
Compuestos de Amonio/metabolismo , Agua Subterránea/análisis , Nitratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Humedales , Compuestos de Amonio/aislamiento & purificación , Biodegradación Ambiental , Desnitrificación , Agua Subterránea/microbiología , Nitratos/aislamiento & purificación , Nitrificación , Raíces de Plantas/metabolismo , Poaceae/metabolismo , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...