Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716726

RESUMEN

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.


Asunto(s)
Proteínas del Citoesqueleto , Hipertensión Esencial , Secuenciación del Exoma , Proteínas del Tejido Nervioso , Adolescente , Niño , Femenino , Humanos , Masculino , Edad de Inicio , Proteínas del Citoesqueleto/genética , Hipertensión Esencial/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Linaje , Proteína de Unión al GTP rhoA/genética , Estados Unidos/epidemiología , Recién Nacido , Lactante , Preescolar , Adulto Joven
2.
Methods Mol Biol ; 2660: 357-372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37191809

RESUMEN

Traditionally, disease causal mutations were thought to disrupt gene function. However, it becomes more clear that many deleterious mutations could exhibit a "gain-of-function" (GOF) behavior. Systematic investigation of such mutations has been lacking and largely overlooked. Advances in next-generation sequencing have identified thousands of genomic variants that perturb the normal functions of proteins, further contributing to diverse phenotypic consequences in disease. Elucidating the functional pathways rewired by GOF mutations will be crucial for prioritizing disease-causing variants and their resultant therapeutic liabilities. In distinct cell types (with varying genotypes), precise signal transduction controls cell decision, including gene regulation and phenotypic output. When signal transduction goes awry due to GOF mutations, it would give rise to various disease types. Quantitative and molecular understanding of network perturbations by GOF mutations may provide explanations for 'missing heritability" in previous genome-wide association studies. We envision that it will be instrumental to push current paradigm toward a thorough functional and quantitative modeling of all GOF mutations and their mechanistic molecular events involved in disease development and progression. Many fundamental questions pertaining to genotype-phenotype relationships remain unresolved. For example, which GOF mutations are key for gene regulation and cellular decisions? What are the GOF mechanisms at various regulation levels? How do interaction networks undergo rewiring upon GOF mutations? Is it possible to leverage GOF mutations to reprogram signal transduction in cells, aiming to cure disease? To begin to address these questions, we will cover a wide range of topics regarding GOF disease mutations and their characterization by multi-omic networks. We highlight the fundamental function of GOF mutations and discuss the potential mechanistic effects in the context of signaling networks. We also discuss advances in bioinformatic and computational resources, which will dramatically help with studies on the functional and phenotypic consequences of GOF mutations.


Asunto(s)
Multiómica , Medicina de Precisión , Estudio de Asociación del Genoma Completo , Mutación , Mutación con Ganancia de Función
3.
HGG Adv ; 4(3): 100188, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37124138

RESUMEN

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by aplasia of the female reproductive tract; the syndrome can include renal anomalies, absence or dysgenesis, and skeletal anomalies. While functional models have elucidated several candidate genes, only WNT4 (MIM: 603490) variants have been definitively associated with a subtype of MRKH with hyperandrogenism (MIM: 158330). DNA from 148 clinically diagnosed MRKH probands across 144 unrelated families and available family members from North America, Europe, and South America were exome sequenced (ES) and by family-based genomics analyzed for rare likely deleterious variants. A replication cohort consisting of 442 Han Chinese individuals with MRKH was used to further reproduce GREB1L findings in diverse genetic backgrounds. Proband and OMIM phenotypes annotated using the Human Phenotype Ontology were analyzed to quantitatively delineate the phenotypic spectrum associated with GREB1L variant alleles found in our MRKH cohort and those previously published. This study reports 18 novel GREB1L variant alleles, 16 within a multiethnic MRKH cohort and two within a congenital scoliosis cohort. Cohort-wide analyses for a burden of rare variants within a single gene identified likely damaging variants in GREB1L (MIM: 617782), a known disease gene for renal hypoplasia and uterine abnormalities (MIM: 617805), in 16 of 590 MRKH probands. GREB1L variant alleles, including a CNV null allele, were found in 8 MRKH type 1 probands and 8 MRKH type II probands. This study used quantitative phenotypic analyses in a worldwide multiethnic cohort to identify and strengthen the association of GREB1L to isolated uterine agenesis (MRKH type I) and syndromic MRKH type II.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX , Anomalías Urogenitales , Femenino , Humanos , Trastornos del Desarrollo Sexual 46, XX/genética , Útero/anomalías
4.
Comput Struct Biotechnol J ; 21: 1533-1542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36879885

RESUMEN

Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.

6.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36752347

RESUMEN

Alzheimer's disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk mutations systematically. To address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework ('AD-Syn-Net'), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Aprendizaje Profundo , Humanos , Enfermedad de Alzheimer/genética , Imagen por Resonancia Magnética , Disfunción Cognitiva/genética , Mutación
7.
Genet Med ; 24(10): 2187-2193, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962790

RESUMEN

PURPOSE: We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. METHODS: Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. RESULTS: We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. CONCLUSION: In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome.


Asunto(s)
Artrogriposis , Contractura , Proteínas ADAMTS , Animales , Artrogriposis/genética , Consanguinidad , Contractura/genética , Homocigoto , Humanos , Ratones , Mutación , Linaje , Fenotipo
8.
Genet Med ; 24(4): 784-797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35148959

RESUMEN

PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients.


Asunto(s)
Exoma , Genómica , Estudios de Asociación Genética , Humanos , Fenotipo , Secuenciación del Exoma
9.
J Allergy Clin Immunol ; 149(2): 758-766, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34329649

RESUMEN

BACKGROUND: Pediatric nonmalignant lymphoproliferative disorders (PLPDs) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. OBJECTIVE: The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. METHODS: PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant Epstein-Barr virus (EBV) infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing. RESULTS: Whole exome sequencing identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, P = .03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs 90%; P = .002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. CONCLUSIONS: PLPD defines children at high risk for mortality, and whole exome sequencing informs clinical risks and therapeutic opportunities for this diagnosis.


Asunto(s)
Trastornos Linfoproliferativos/genética , Adolescente , Autoinmunidad , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Inmunidad/genética , Lactante , Trastornos Linfoproliferativos/etiología , Trastornos Linfoproliferativos/inmunología , Trastornos Linfoproliferativos/mortalidad , Masculino , Secuenciación del Exoma , Adulto Joven
10.
Genet Med ; 24(3): 631-644, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906488

RESUMEN

PURPOSE: We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families, involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnormalities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better define the phenotype and pathologic disease mechanism. METHODS: Clinical and genomic investigations were undertaken alongside molecular studies, including immunoblotting and immunofluorescence analyses of variant/wild-type human HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants. RESULTS: Ten newly identified individuals with this condition were investigated, and they were associated with 9 novel pathogenic variants. Clinical studies defined genotype-phenotype correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the condition. In silico modeling of missense variants identified likely deleterious effects on protein folding. Consistent with this, functional studies indicated that these variants cause protein instability and a concomitant cell surface absence of HYAL2 protein. CONCLUSION: These studies confirm an association between HYAL2 alterations and syndromic cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable further insights into the pathomolecular basis of the disease, and delineate the core and variable clinical outcomes of the condition.


Asunto(s)
Labio Leporino , Fisura del Paladar , Alelos , Animales , Moléculas de Adhesión Celular/genética , Labio Leporino/genética , Fisura del Paladar/genética , Proteínas Ligadas a GPI/genética , Estudios de Asociación Genética , Humanos , Hialuronoglucosaminidasa/genética , Ratones , Fenotipo
11.
Blood ; 137(4): 493-499, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32905580

RESUMEN

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.


Asunto(s)
Agammaglobulinemia/genética , Linfocitos B/patología , Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Síndromes de Inmunodeficiencia/genética , Linfopenia/genética , Adulto , Animales , Linfocitos B/metabolismo , Niño , Preescolar , Cromosomas Humanos Par 5/genética , Codón sin Sentido , Consanguinidad , Enfermedad de Crohn/genética , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Cardiopatías Congénitas/genética , Humanos , Infecciones/etiología , Mutación con Pérdida de Función , Masculino , Ratones , Neutropenia/genética , Linaje , Disomía Uniparental , Secuenciación del Exoma
12.
Science ; 369(6500): 202-207, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32647003

RESUMEN

Immunodeficiency often coincides with hyperactive immune disorders such as autoimmunity, lymphoproliferation, or atopy, but this coincidence is rarely understood on a molecular level. We describe five patients from four families with immunodeficiency coupled with atopy, lymphoproliferation, and cytokine overproduction harboring mutations in NCKAP1L, which encodes the hematopoietic-specific HEM1 protein. These mutations cause the loss of the HEM1 protein and the WAVE regulatory complex (WRC) or disrupt binding to the WRC regulator, Arf1, thereby impairing actin polymerization, synapse formation, and immune cell migration. Diminished cortical actin networks caused by WRC loss led to uncontrolled cytokine release and immune hyperresponsiveness. HEM1 loss also blocked mechanistic target of rapamycin complex 2 (mTORC2)-dependent AKT phosphorylation, T cell proliferation, and selected effector functions, leading to immunodeficiency. Thus, the evolutionarily conserved HEM1 protein simultaneously regulates filamentous actin (F-actin) and mTORC2 signaling to achieve equipoise in immune responses.


Asunto(s)
Actinas/metabolismo , Citocinas/biosíntesis , Síndromes de Inmunodeficiencia/genética , Trastornos Linfoproliferativos/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas de la Membrana/fisiología , Factor 1 de Ribosilacion-ADP/metabolismo , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Humanos , Síndromes de Inmunodeficiencia/inmunología , Trastornos Linfoproliferativos/inmunología , Proteínas de la Membrana/genética , Linaje , Fosforilación , Familia de Proteínas del Síndrome de Wiskott-Aldrich/química , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
13.
Genet Med ; 22(11): 1768-1776, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32655138

RESUMEN

PURPOSE: The goal of this study was to assess the scale of low-level parental mosaicism in exome sequencing (ES) databases. METHODS: We analyzed approximately 2000 family trio ES data sets from the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) and Baylor Genetics (BG). Among apparent de novo single-nucleotide variants identified in the affected probands, we selected rare unique variants with variant allele fraction (VAF) between 30% and 70% in the probands and lower than 10% in one of the parents. RESULTS: Of 102 candidate mosaic variants validated using amplicon-based next-generation sequencing, droplet digital polymerase chain reaction, or blocker displacement amplification, 27 (26.4%) were confirmed to be low- (VAF between 1% and 10%) or very low (VAF <1%) level mosaic. Detection precision in parental samples with two or more alternate reads was 63.6% (BHCMG) and 43.6% (BG). In nine investigated individuals, we observed variability of mosaic ratios among blood, saliva, fibroblast, buccal, hair, and urine samples. CONCLUSION: Our computational pipeline enables robust discrimination between true and false positive candidate mosaic variants and efficient detection of low-level mosaicism in ES samples. We confirm that the presence of two or more alternate reads in the parental sample is a reliable predictor of low-level parental somatic mosaicism.


Asunto(s)
Exoma , Mosaicismo , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Padres , Secuenciación del Exoma
14.
J Clin Invest ; 130(8): 4411-4422, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32484799

RESUMEN

Patients with common variable immunodeficiency associated with autoimmune cytopenia (CVID+AIC) generate few isotype-switched B cells with severely decreased frequencies of somatic hypermutations (SHMs), but their underlying molecular defects remain poorly characterized. We identified a CVID+AIC patient who displays a rare homozygous missense M466V mutation in ß-catenin-like protein 1 (CTNNBL1). Because CTNNBL1 binds activation-induced cytidine deaminase (AID) that catalyzes SHM, we tested AID interactions with the CTNNBL1 M466V variant. We found that the M466V mutation interfered with the association of CTNNBL1 with AID, resulting in decreased AID in the nuclei of patient EBV-transformed B cell lines and of CTNNBL1 466V/V Ramos B cells engineered to express only CTNNBL1 M466V using CRISPR/Cas9 technology. As a consequence, the scarce IgG+ memory B cells from the CTNNBL1 466V/V patient showed a low SHM frequency that averaged 6.7 mutations compared with about 18 mutations per clone in healthy-donor counterparts. In addition, CTNNBL1 466V/V Ramos B cells displayed a decreased incidence of SHM that was reduced by half compared with parental WT Ramos B cells, demonstrating that the CTNNBL1 M466V mutation is responsible for defective SHM induction. We conclude that CTNNBL1 plays an important role in regulating AID-dependent antibody diversification in humans.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Linfocitos B , Inmunodeficiencia Variable Común , Homocigoto , Memoria Inmunológica/genética , Mutación Missense , Proteínas Nucleares , Hipermutación Somática de Inmunoglobulina , Sustitución de Aminoácidos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , Línea Celular , Preescolar , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/inmunología , Inmunodeficiencia Variable Común/patología , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Femenino , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología
15.
Am J Med Genet A ; 182(6): 1387-1399, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32233023

RESUMEN

BACKGROUND: Wolff-Parkinson-White (WPW) syndrome is a relatively common arrhythmia affecting ~1-3/1,000 individuals. Mutations in PRKAG2 have been described in rare patients in association with cardiomyopathy. However, the genetic basis of WPW in individuals with a structurally normal heart remains poorly understood. Sudden death due to atrial fibrillation (AF) can also occur in these individuals. Several studies have indicated that despite ablation of an accessory pathway, the risk of AF remains high in patients compared to general population. METHODS: We applied exome sequencing in 305 subjects, including 65 trios, 80 singletons, and 6 multiple affected families. We used de novo analysis, candidate gene approach, and burden testing to explore the genetic contributions to WPW. RESULTS: A heterozygous deleterious variant in PRKAG2 was identified in one subject, accounting for 0.6% (1/151) of the genetic basis of WPW in this study. Another individual with WPW and left ventricular hypertrophy carried a known pathogenic variant in MYH7. We found rare de novo variants in genes associated with arrhythmia and cardiomyopathy (ANK2, NEBL, PITX2, and PRDM16) in this cohort. There was an increased burden of rare deleterious variants (MAF ≤ 0.005) with CADD score ≥ 25 in genes linked to AF in cases compared to controls (P = .0023). CONCLUSIONS: Our findings show an increased burden of rare deleterious variants in genes linked to AF in WPW syndrome, suggesting that genetic factors that determine the development of accessory pathways may be linked to an increased susceptibility of atrial muscle to AF in a subset of patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad , Síndrome de Wolff-Parkinson-White/genética , Adolescente , Adulto , Ancirinas/genética , Fibrilación Atrial/patología , Proteínas Portadoras/genética , Niño , Estudios de Cohortes , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Femenino , Estudios de Asociación Genética , Atrios Cardíacos/patología , Proteínas de Homeodominio/genética , Humanos , Proteínas con Dominio LIM/genética , Masculino , Mutación/genética , Factores de Transcripción/genética , Secuenciación del Exoma , Síndrome de Wolff-Parkinson-White/patología , Adulto Joven , Proteína del Homeodomínio PITX2
17.
Brain ; 143(1): 112-130, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794024

RESUMEN

The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.


Asunto(s)
Autofagia/genética , Anomalías Craneofaciales/genética , Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Proteínas de Transporte Vesicular/genética , Atrofia , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Niño , Preescolar , Anomalías Craneofaciales/diagnóstico por imagen , Sordera/genética , Sordera/fisiopatología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Masculino , Microcefalia/genética , Microcefalia/fisiopatología , Microscopía Fluorescente , Espasticidad Muscular/genética , Espasticidad Muscular/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Linaje , Cuadriplejía/genética , Cuadriplejía/fisiopatología , Sitios de Empalme de ARN/genética , Síndrome
18.
Hum Mutat ; 41(2): 487-501, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31692161

RESUMEN

Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap complicating the clinical diagnosis. Whole-exome sequencing (WES) has increased the overall diagnostic rate considerably. However, the upper limit of this method remains ill-defined, hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76 predominantly adult and sporadic-onset patients, expanded the total number of cases to 260, and introduced analyses for copy number variation and repeat expansion in a representative subset. For new cases (n = 184), our resulting clinically relevant detection rate remained stable at 47% with 24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly improved the pathogenic rate by 7%. For the combined cohort (n = 260), the total observed clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar neurological phenotypes report comparable rates. This consistency across multiple cohorts suggests that, despite continued technical and analytical advancements, an approximately 50% diagnostic rate marks a relative ceiling for current WES-based methods and a more comprehensive genome-wide assessment is needed to identify the missing causative genetic etiologies for cerebellar ataxia and related neurodegenerative diseases.


Asunto(s)
Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Secuenciación del Exoma , Exoma , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Repeticiones de Microsatélite
19.
Am J Hum Genet ; 105(5): 974-986, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31668702

RESUMEN

The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Bases de Datos Genéticas , Exoma/genética , Genómica/métodos , Humanos , Linaje , Fenotipo , Secuenciación del Exoma/métodos
20.
J Exp Med ; 216(12): 2778-2799, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31601675

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is characterized by immune dysregulation due to inadequate restraint of overactivated immune cells and is associated with a variable clinical spectrum having overlap with more common pathophysiologies. HLH is difficult to diagnose and can be part of inflammatory syndromes. Here, we identify a novel hematological/autoinflammatory condition (NOCARH syndrome) in four unrelated patients with superimposable features, including neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and HLH. Patients shared the same de novo CDC42 mutation (Chr1:22417990C>T, p.R186C) and altered hematopoietic compartment, immune dysregulation, and inflammation. CDC42 mutations had been associated with syndromic neurodevelopmental disorders. In vitro and in vivo assays documented unique effects of p.R186C on CDC42 localization and function, correlating with the distinctiveness of the trait. Emapalumab was critical to the survival of one patient, who underwent successful bone marrow transplantation. Early recognition of the disorder and establishment of treatment followed by bone marrow transplant are important to survival.


Asunto(s)
Susceptibilidad a Enfermedades , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Fenotipo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Alelos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Niño , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Mutación , Unión Proteica , Proteína de Unión al GTP cdc42/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...