Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Oncogene ; 33(47): 5457-66, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24240690

RESUMEN

We show that expression of the microtubule depolymerizing kinesin KIF2C is induced by transformation of immortalized human bronchial epithelial cells (HBEC) by expression of K-Ras(G12V) and knockdown of p53. Further investigation demonstrates that this is due to the K-Ras/ERK1/2 MAPK pathway, as loss of p53 had little effect on KIF2C expression. In addition to KIF2C, we also found that the related kinesin KIF2A is modestly upregulated in this model system; both proteins are expressed more highly in many lung cancer cell lines compared to normal tissue. As a consequence of their depolymerizing activity, these kinesins increase dynamic instability of microtubules. Depletion of either of these kinesins impairs the ability of cells transformed with mutant K-Ras to migrate and invade matrigel. However, depletion of these kinesins does not reverse the epithelial to mesenchymal transition (EMT) caused by mutant K-Ras. Our studies indicate that increased expression of microtubule destabilizing factors can occur during oncogenesis to support enhanced migration and invasion of tumor cells.


Asunto(s)
Carcinoma Broncogénico/genética , Transformación Celular Neoplásica , Genes ras , Cinesinas/metabolismo , Proteína p53 Supresora de Tumor/genética , Bronquios/citología , Carcinoma Broncogénico/patología , Movimiento Celular/genética , Citoesqueleto/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Mutación , Transducción de Señal/genética
2.
Oncogenesis ; 2: e63, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23958853

RESUMEN

The developmental transcription factor NeuroD1 is anomalously expressed in a subset of aggressive neuroendocrine tumors. Previously, we demonstrated that TrkB and neural cell adhesion molecule (NCAM) are downstream targets of NeuroD1 that contribute to the actions of neurogenic differentiation 1 (NeuroD1) in neuroendocrine lung. We found that several malignant melanoma and prostate cell lines express NeuroD1 and TrkB. Inhibition of TrkB activity decreased invasion in several neuroendocrine pigmented melanoma but not in prostate cell lines. We also found that loss of the tumor suppressor p53 increased NeuroD1 expression in normal human bronchial epithelial cells and cancer cells with neuroendocrine features. Although we found that a major mechanism of action of NeuroD1 is by the regulation of TrkB, effective targeting of TrkB to inhibit invasion may depend on the cell of origin. These findings suggest that NeuroD1 is a lineage-dependent oncogene acting through its downstream target, TrkB, across multiple cancer types, which may provide new insights into the pathogenesis of neuroendocrine cancers.

3.
Acta Physiol (Oxf) ; 192(1): 11-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18171425

RESUMEN

Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activities are modulated in a manner that reflects the secretory demand on beta cells to integrate long- and short-term nutrient sensing information. Our studies have focused on the mechanisms of ERK1/2 activation in beta cells and on the actions of ERK1/2 that regulate beta cell function. Insulin and growth factors regulate ERK1/2 in beta cells in a largely calcium-independent manner. Nutrients and anticipatory hormones, in contrast, activate ERK1/2 in a calcium-dependent manner in these cells. We are exploring the key intermediates in these distinct activation pathways and find that calcineurin is essential for the nutrient pathway but is not essential for the growth factor pathway. Using reporter assays, heterologous reconstitution, electrophoretic mobility shift assays, Northern analysis, Q-PCR and chromatin immunoprecipitation, we have examined several genes that are regulated by ERK1/2, primarily the insulin gene and the apoptotic factor C/EBP-homologous protein (CHOP)-10 (GADD153/DDIT-3), a bZIP protein. ERK1/2-sensitive transcriptional regulators common to these two genes are C/EBP-beta and MafA. The insulin promoter is both positively and negatively regulated by glucose and other nutrients. Exposure to glucose for minutes to hours causes an increase in the rate of insulin gene transcription. In contrast, exposure to elevated glucose for 48 h or more results in inhibition of the insulin gene promoter. Both of these processes depend on ERK1/2 activity. Expression of CHOP is induced by stresses including nutrient deprivation and endoplasmic reticulum stress. CHOP gene expression, especially that regulated by nutrients, is also ERK1/2-dependent in beta cells, These studies support the hypothesis that the genes regulated by ERK1/2 and the mechanisms employed are key to maintaining normal beta cell function.


Asunto(s)
Células Secretoras de Insulina/enzimología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Activación Enzimática/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Insulina/genética , Células Secretoras de Insulina/fisiología , Factor de Transcripción CHOP/metabolismo , Transcripción Genética/fisiología
4.
Oncogene ; 26(22): 3100-12, 2007 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-17496909

RESUMEN

Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1-3)) and p38(alpha, beta, gamma and delta) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/fisiología
5.
Gene ; 279(2): 137-47, 2001 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-11733138

RESUMEN

TAO1 and TAO2 are recently described protein kinases whose initial characterization has placed them at the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase kinase (MEKK) level of stress-responsive MAPK pathways. Because their physiological roles have not been identified, we sought to study their C. elegans homolog to learn more about their functions. kin-18 encodes a previously uncharacterized protein in C. elegans whose catalytic domain shares over 60% identity with TAO1 and TAO2. We demonstrate that KIN-18 is a protein of 120 kDa whose promoter is active in the pharynx and intestine of C. elegans. To learn more about TAO/KIN-18 function, we studied how expression of constitutively active forms of TAO1 or KIN-18 would affect the physiology of intact worms. Strains of C. elegans expressing active forms of TAO1 or KIN-18 exhibit altered pharyngeal electrophysiology as measured by electropharyngeogram. These worms grow more slowly and lay fewer eggs, phenotypes that could result from reduced feeding. We have also identified a C. elegans gene that encodes a protein kinase similar to mammalian MAPK/ERK Kinase (MEK) 4 whose promoter is active in the pharynx. It is phosphorylated by TAO1 in vitro and physically interacts with TAO1.


Asunto(s)
Caenorhabditis elegans/genética , Conducta Alimentaria/fisiología , Proteínas del Helminto/genética , Proteínas Quinasas/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/fisiología , Línea Celular , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis Insercional , Mutación , Faringe/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
6.
Mol Cell ; 8(5): 932-3, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11741528

RESUMEN

In this issue of Molecular Cell, Stefanovsky et al. demonstrate that the activation of the ERK1/2 MAP kinases by growth factors leads to induction of ribosomal gene transcription, through a mechanism dependent on phosphorylation of the upstream binding factor (UBF). This provides a connection between growth factor signaling and increased translation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Ribosomas/química , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Proteína Quinasa 3 Activada por Mitógenos , Regiones Promotoras Genéticas , ARN/metabolismo , Ribosomas/genética , Transducción de Señal/fisiología , Transcripción Genética
8.
J Biol Chem ; 276(28): 26509-15, 2001 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-11352917

RESUMEN

Docking between MEK1 and ERK2 is required for their stable interaction and efficient signal transmission. The MEK1 N terminus contains the ERK docking or D domain that consists of conserved hydrophobic and basic residues. We mutated the hydrophobic and basic residues individually and found that loss of either type reduced MEK1 phosphorylation of ERK2 in vitro and its ability to bind to ERK2 in vivo. Moreover, ERK2 was localized in both the cytoplasm and the nucleus when co-expressed with MEK1 that had mutations in either the hydrophobic or the basic residues. We then identified two conserved hydrophobic residues on ERK2 that play roles in docking with MEK1. Mutating these residues to alanine reduced the interaction of ERK2 with MEK1 in cells. These mutations also reduced the phosphorylation of MEK1 by ERK2 but had little effect on phosphorylation of MBP by ERK2. Finally, we generated docking site mutants in ERK2-MEK1 fusion proteins. Although the mutation of the MEK1 D domain significantly reduced ERK2-MEK1 activity, mutations of the putatively complementary acidic residues and hydrophobic residues on ERK2 did not change its activity. However, both types of mutations decreased the phosphorylation of Elk-1 caused by ERK2-MEK1 fusion proteins. These findings suggest complex interactions of MEK1 D domains with ERK2 that influence its activation and its effects on substrates.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Proteínas Serina-Treonina Quinasas/química , Secuencia de Aminoácidos , Línea Celular , Humanos , MAP Quinasa Quinasa 1 , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Relación Estructura-Actividad
10.
Endocr Rev ; 22(2): 153-83, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11294822

RESUMEN

Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos/química , Fosforilación
11.
J Biol Chem ; 276(19): 16070-5, 2001 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-11279118

RESUMEN

Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Anticuerpos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Clonación Molecular , Activación Enzimática , Escherichia coli , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , MAP Quinasa Quinasa 3 , MAP Quinasa Quinasa 6 , Proteína Quinasa 8 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neuroblastoma , Fragmentos de Péptidos/inmunología , Fosforilación , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transfección , Células Tumorales Cultivadas
12.
J Biol Chem ; 276(11): 7927-31, 2001 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-11118448

RESUMEN

We have previously demonstrated an involvement of MEK5 and ERK5 in RafBXB-stimulated focus formation in NIH3T3 cells. We find here that MEK5 and ERK5 cooperate with the RafBXB effectors MEK1/2 and ERK1/2 to induce foci. To further understand MEK5-ERK5-dependent signaling, we examined potential MEK5-ERK5 effectors that might influence focus-forming activity. Consistent with results from our focus-formation assays, constitutively active variants of MEK5 and MEK1 synergize to activate NF-kappaB, and MEK5 and ERK5 are required for activation of NF-kappaB by RafBXB. The MEK5-ERK5 pathway is also sufficient to activate both NF-kappaB and p90 ribosomal S6 kinase. Our results support the hypothesis that NF-kappaB and p90 ribosomal S6 kinase are involved in MEK5-ERK5-dependent focus formation and may serve as integration points for ERK5 and ERK1/2 signaling.


Asunto(s)
Transformación Celular Neoplásica , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , FN-kappa B/metabolismo , Células 3T3 , Animales , División Celular , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina , Péptidos y Proteínas de Señalización Intercelular , MAP Quinasa Quinasa 1 , MAP Quinasa Quinasa 5 , Ratones , Proteína Quinasa 7 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-raf/fisiología , Elementos de Respuesta , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transcripción Genética
13.
J Biol Chem ; 275(48): 37303-6, 2000 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11018021

RESUMEN

The Raf family of serine/threonine protein kinases is intimately involved in the transmission of cell regulatory signals controlling proliferation and differentiation. The best characterized Raf substrates are MEK1 and MEK2. The activation of MEK1/2 by Raf is required to mediate many of the cellular responses to Raf activation, suggesting that MEK1/2 are the dominant Raf effector proteins. However, accumulating evidence suggests that there are additional Raf substrates and that subsets of Raf-induced regulatory events are mediated independently of Raf activation of MEK1/2. To examine the possibility that there is bifurcation at the level of Raf in activation of MEK1/2-dependent and MEK1/2-independent cell regulatory events, we engineered a kinase-active Raf1 variant (RafBXB(T481A)) with an amino acid substitution that disrupts MEK1 binding. We find that disruption of MEK1/2 association uncouples Raf from activation of ERK1/2, induction of serum-response element-dependent gene expression, and induction of growth and morphological transformation. However, activation of NF-kappaB-dependent gene expression and induction of neurite differentiation were unimpaired. In addition, Raf-dependent activation of p90 ribosomal S6 kinase was only slightly impaired. These results support the hypothesis that Raf kinases utilize multiple downstream effectors to regulate distinct cellular activities.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Células 3T3 , Animales , Activación Enzimática , MAP Quinasa Quinasa 1 , MAP Quinasa Quinasa 2 , Ratones , Neuritas , Células PC12 , Ratas , Proteínas Recombinantes/metabolismo
14.
Nat Neurosci ; 3(11): 1107-12, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11036267

RESUMEN

Although the function of the p42/p44 mitogen-activated protein (MAP) kinase pathway in long-term potentiation at hippocampal CA3-CA1 synapses has been well described, relatively little is known about the importance of the p38 MAP kinase pathway in synaptic plasticity. Here we show that the p38 MAP kinase pathway, a parallel signaling cascade activated by distinct upstream kinases, mediates the induction of metabotropic glutamate receptor-dependent long-term depression at CA3-CA1 synapses. Thus, two parallel MAP kinase pathways contribute to opposing forms of long-term plasticity at a central synapse.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sinapsis/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos
15.
J Biol Chem ; 275(51): 40120-7, 2000 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-10969079

RESUMEN

Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.


Asunto(s)
Quinasa 1 de Quinasa de Quinasa MAP , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Línea Celular , Humanos , Unión Proteica , Especificidad por Sustrato
16.
J Biol Chem ; 275(41): 32193-9, 2000 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-10938283

RESUMEN

Cellular stresses inhibit retinoid signaling, but the molecular basis for this phenomenon has not been revealed. Here, we present evidence that retinoid X receptor (RXR) is a substrate for both mitogen-activated protein kinase kinase-4 (MKK4/SEK1) and its downstream mediator c-Jun N-terminal kinase (JNK). MKK4/SEK1 and JNK recognized distinct features on RXR in the DE and AB regions, respectively. Phosphorylation by MKK4/SEK1 had profound effects on the biochemical properties of RXR, inhibiting the expression of genes activated by RXR-retinoic acid receptor complexes. Tyr-249 in the RXR DE region was required for the inhibitory effect of MKK4/SEK1. These effects were significantly reduced in MKK4/SEK1-null cells, indicating that MKK4/SEK1 is required for the suppression of retinoid signaling by stress. Findings presented here demonstrate that MKK4/SEK1 can directly modulate transcription by phosphorylating RXR, a novel MKK4/SEK1 substrate.


Asunto(s)
Regulación de la Expresión Génica , MAP Quinasa Quinasa 4 , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/metabolismo , Animales , Células COS , Activación Enzimática , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros/genética , Proteínas Quinasas JNK Activadas por Mitógenos , Laminina/genética , Ligandos , Ratones , Proteína Quinasa 8 Activada por Mitógenos , Proteína Quinasa 9 Activada por Mitógenos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Receptores X Retinoide , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/genética , Transfección , Tretinoina/antagonistas & inhibidores , Tretinoina/farmacología , Tirosina/genética , Tirosina/metabolismo
17.
Biochemistry ; 39(20): 6258-66, 2000 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-10821702

RESUMEN

The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/química , Adenosina Trifosfato/química , Animales , Catálisis , Bovinos , Humanos , Cinética , Proteína Básica de Mielina/química , Oligopéptidos/síntesis química , Oligopéptidos/química , Biblioteca de Péptidos , Fosforilación , Solventes , Relación Estructura-Actividad , Especificidad por Sustrato , Viscosidad
18.
J Biol Chem ; 275(22): 16795-801, 2000 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-10828064

RESUMEN

We have cloned and characterized a novel mammalian serine/threonine protein kinase WNK1 (with no lysine (K)) from a rat brain cDNA library. WNK1 has 2126 amino acids and can be detected as a protein of approximately 230 kDa in various cell lines and rat tissues. WNK1 contains a small N-terminal domain followed by the kinase domain and a long C-terminal tail. The WNK1 kinase domain has the greatest similarity to the MEKK protein kinase family. However, overexpression of WNK1 in HEK293 cells exerts no detectable effect on the activity of known, co-transfected mitogen-activated protein kinases, suggesting that it belongs to a distinct pathway. WNK1 phosphorylates the exogenous substrate myelin basic protein as well as itself mostly on serine residues, confirming that it is a serine/threonine protein kinase. The demonstration of activity was striking because WNK1, and its homologs in other organisms lack the invariant catalytic lysine in subdomain II of protein kinases that is crucial for binding to ATP. A model of WNK1 using the structure of cAMP-dependent protein kinase suggests that lysine 233 in kinase subdomain I may provide this function. Mutation of this lysine residue to methionine eliminates WNK1 activity, consistent with the conclusion that it is required for catalysis. This distinct organization of catalytic residues indicates that WNK1 belongs to a novel family of serine/threonine protein kinases.


Asunto(s)
Lisina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico , ADN Complementario , Antígenos de Histocompatibilidad Menor , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Ratas , Homología de Secuencia de Aminoácido , Proteína Quinasa Deficiente en Lisina WNK 1
19.
Curr Biol ; 10(9): 551-4, 2000 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-10801448

RESUMEN

We have previously shown that inhibition of phosphatidylinositol (PI) 3-kinase severely attenuates the activation of extracellular signal-regulated kinase (Erk) following engagement of integrin/fibronectin receptors and that Raf is the critical target of PI 3-kinase regulation [1]. To investigate how PI 3-kinase regulates Raf, we examined sites on Raf1 required for regulation by PI 3-kinase and explored the mechanisms involved in this regulation. Serine 338 (Ser338), which was critical for fibronectin stimulation of Raf1, was phosphorylated in a PI 3-kinase-dependent manner following engagement of fibronectin receptors. In addition, fibronectin activation of a Raf1 mutant containing a phospho-mimic mutation (S338D) was independent of PI 3-kinase. Furthermore, integrin-induced activation of the serine/threonine kinase Pak-1, which has been shown to phosphorylate Raf1 Ser338, was also dependent on PI 3-kinase activity and expression of a kinase-inactive Pak-1 mutant blocked phosphorylation of Raf1 Ser338. These results indicate that PI 3-kinase regulates phosphorylation of Raf1 Ser338 through the serine/threonine kinase Pak. Thus, phosphorylation of Raf1 Ser338 through PI 3-kinase and Pak provides a co-stimulatory signal which together with Ras leads to strong activation of Raf1 kinase activity by integrins.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Serina/metabolismo , Animales , Células COS , Integrinas/metabolismo , Mutagénesis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-raf/genética , Serina/genética , Quinasas p21 Activadas
20.
Immunity ; 12(4): 399-408, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10795738

RESUMEN

The serine/threonine kinase HPK1 is a member of the germinal center kinase (GCK) family that has been implicated in the regulation of MAP kinase pathways. Here, we demonstrate the involvement of HPK1 in antigen receptor signaling. Engagement of the TCR or the BCR resulted in a marked induction of HPK1 catalytic activity. Subsequent analysis revealed that Src and Syk/ZAP-70 tyrosine kinases and the adaptor proteins LAT, SLP-76, BLNK, Grb2, and Grap are involved in HPK1 activation. Overexpression of HPK1 inhibited TCR activation of AP-1 and ERK2, whereas the kinase-inactive mutant of HPK1 potentiated these responses. Neither form of HPK1 affected PMA or v-Ras activation of AP-1 and ERK2. Thus, HPK1 is a negative regulator of the TCR-induced AP-1 response pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Factor de Transcripción AP-1/fisiología , Proteínas Portadoras/fisiología , Catálisis , Activación Enzimática , Proteína Adaptadora GRB2 , Humanos , Células Jurkat , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Oncogénica p21(ras)/fisiología , Fosfoproteínas/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/fisiología , Proteínas/fisiología , Proteína Tirosina Quinasa ZAP-70 , Familia-src Quinasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA