Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 33, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913335

RESUMEN

Pea weevil (Bruchus pisorum) is a damaging insect pest affecting pea (Pisum sativum) production worldwide. No resistant cultivars are available, although some levels of incomplete resistance have been identified in Pisum germplasm. To decipher the genetic control underlying the resistance previously identify in P. sativum ssp. syriacum, a recombinant inbred line (RIL F8:9) population was developed. The RIL was genotyped through Diversity Arrays Technology PL's DArTseq platform and screened under field conditions for weevil seed infestation and larval development along 5 environments. A newly integrated genetic linkage map was generated with a subset of 6,540 markers, assembled into seven linkage groups, equivalent to the number of haploid pea chromosomes. An accumulated distance of 2,503 cM was covered with an average density of 2.61 markers cM-1. The linkage map allowed the identification of three QTLs associated to reduced seed infestation along LGs I, II and IV. In addition, a QTL for reduced larval development was also identified in LGIV. Expression of these QTLs varied with the environment, being particularly interesting QTL BpSI.III that was detected in most of the environments studied. This high-saturated pea genetic map has also allowed the identification of seven potential candidate genes co-located with QTLs for marker-assisted selection, providing an opportunity for breeders to generate effective and sustainable strategies for weevil control.


Asunto(s)
Resistencia a la Enfermedad/genética , Pisum sativum/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/genética , Gorgojos/fisiología , Animales , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Genes de Plantas , Ligamiento Genético , Genotipo , Pisum sativum/inmunología , Pisum sativum/parasitología , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Semillas/inmunología , Semillas/parasitología
2.
Front Plant Sci ; 9: 167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497430

RESUMEN

Pisum fulvum, a wild relative of pea is an important source of allelic diversity to improve the genetic resistance of cultivated species against fungal diseases of economic importance like the pea rust caused by Uromyces pisi. To unravel the genetic control underlying resistance to this fungal disease, a recombinant inbred line (RIL) population was generated from a cross between two P. fulvum accessions, IFPI3260 and IFPI3251, and genotyped using Diversity Arrays Technology. A total of 9,569 high-quality DArT-Seq and 8,514 SNPs markers were generated. Finally, a total of 12,058 markers were assembled into seven linkage groups, equivalent to the number of haploid chromosomes of P. fulvum and P. sativum. The newly constructed integrated genetic linkage map of P. fulvum covered an accumulated distance of 1,877.45 cM, an average density of 1.19 markers cM-1 and an average distance between adjacent markers of 1.85 cM. The composite interval mapping revealed three QTLs distributed over two linkage groups that were associated with the percentage of rust disease severity (DS%). QTLs UpDSII and UpDSIV were located in the LGs II and IV respectively and were consistently identified both in adult plants over 3 years at the field (Córdoba, Spain) and in seedling plants under controlled conditions. Whenever they were detected, their contribution to the total phenotypic variance varied between 19.8 and 29.2. A third QTL (UpDSIV.2) was also located in the LGIVand was environmentally specific as was only detected for DS % in seedlings under controlled conditions. It accounted more than 14% of the phenotypic variation studied. Taking together the data obtained in the study, it could be concluded that the expression of resistance to fungal diseases in P. fulvum originates from the resistant parent IFPI3260.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA