Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834132

RESUMEN

Alzheimer's disease (AD) is a common cause of dementia characterized by neurodegenerative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise (PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health, and preventing cognitive decline. The connection between the immune system, gut microbiota (GM), and neuroinflammation highlights the role of the gut-brain axis in maintaining brain health and preventing neurodegenerative diseases. Neglected so far, PE has beneficial effects on microbial composition and diversity, thus providing the potential to alleviate neurological symptoms. There is bidirectional communication between the gut and muscle, with GM diversity modulation and short-chain fatty acid (SCFA) production affecting muscle metabolism and preservation, and muscle activity/exercise in turn inducing significant changes in GM composition, functionality, diversity, and SCFA production. This gut-muscle and muscle-gut interplay can then modulate cognition. For instance, irisin, an exercise-induced myokine, promotes neuroplasticity and cognitive function through BDNF signaling. Irisin and muscle-generated BDNF may mediate the positive effects of physical activity against some aspects of AD pathophysiology through the interaction of exercise with the gut microbial ecosystem, neural plasticity, anti-inflammatory signaling pathways, and neurogenesis. Understanding gut-muscle-brain interconnections hold promise for developing strategies to promote brain health, fight age-associated cognitive decline, and improve muscle health and longevity.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Fibronectinas , Factor Neurotrófico Derivado del Encéfalo , Ecosistema , Encéfalo , Ejercicio Físico , Músculos
2.
iScience ; 26(10): 107914, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37817933

RESUMEN

Epidemiological data and research highlight increased neuropathy and chronic pain prevalence among females, spanning metabolic and normometabolic contexts, including murine models. Prior findings demonstrated diverse immune and neuroimmune responses between genders in neuropathic pain (NeP), alongside distinct protein expression in sciatic nerves. This study unveils adipose tissue's (AT) role in sex-specific NeP responses after peripheral nerve injury. Metabolic assessments, metabolomics, energy expenditure evaluations, AT proteomic analyses, and adipokine mobilization depict distinct AT reactions to nerve damage. Females exhibit altered lipolysis, fatty acid oxidation, heightened energy expenditure, and augmented steroids secretion affecting glucose and insulin metabolism. Conversely, male neuropathy prompts glycolysis, reduced energy expenditure, and lowered unsaturated fatty acid levels. Males' AT promotes regenerative molecules, oxidative stress defense, and stimulates peroxisome proliferator-activated receptors (PPAR-γ) and adiponectin. This study underscores AT's pivotal role in regulating gender-specific inflammatory and metabolic responses to nerve injuries, shedding light on female NeP susceptibility determinants.

4.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239924

RESUMEN

Neuropathic pain (NeuP) is still an intractable form of highly debilitating chronic pain, resulting from a lesion or disease of the somatosensory nervous system [...].


Asunto(s)
Dolor Crónico , Neuralgia , Neuroesteroides , Humanos , Factores Sexuales , Neuralgia/tratamiento farmacológico , Neuralgia/patología
5.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239933

RESUMEN

The present editorial intends to comment on the contributions published in the second edition of the Special Issue (SI) "The Multiple Mechanisms Underlying Neuropathic Pain" [...].


Asunto(s)
Neuralgia , Humanos
6.
Front Psychiatry ; 13: 1010169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532180

RESUMEN

The occurrence of neuropsychiatric symptoms in the elderly is viewed as an early sign of subsequent cognitive deterioration and conversion from mild cognitive impairment to Alzheimer's disease. The prognosis in terms of both the severity and progression of clinical dementia is generally aggravated by the comorbidity of neuropsychiatric symptoms and decline in cognitive function. Undeniably, aging and in particular unhealthy aging, is a silent "engine of neuropathology" over which multiple changes take place, including drastic alterations of the gut microbial ecosystem. This narrative review evaluates the role of gut microbiota changes as a possible unifying concept through which the comorbidity of neuropsychiatric symptoms and Alzheimer's disease can be considered. However, since the heterogeneity of neuropsychiatric symptoms, it is improbable to describe the same type of alterations in the bacteria population observed in patients with Alzheimer's disease, as well as it is improbable that the variety of drugs used to treat neuropsychiatric symptoms might produce changes in gut bacterial diversity similar to that observed in the pathophysiology of Alzheimer's disease. Depression seems to be another very intriguing exception, as it is one of the most frequent neuropsychiatric symptoms in dementia and a mood disorder frequently associated with brain aging. Antidepressants (i.e., serotonin reuptake inhibitors) or tryptophan dietary supplementation have been shown to reduce Amyloid ß-loading, reinstate microbial diversity and reduce the abundance of bacterial taxa dominant in depression and Alzheimer's disease. This review briefly examines this trajectory by discussing the dysfunction of gut microbiota composition, selected bacterial taxa, and alteration of tryptophan and serotonin metabolism/neurotransmission as overlapping in-common mechanisms involved with depression, Alzheimer's disease, and unhealthy aging.

7.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498830

RESUMEN

As a widely prescribed anti-diabetic drug, metformin has been receiving novel attention for its analgesic potential. In the study of the complex etiology of neuropathic pain (NeP), male and female individuals exhibit quite different responses characterized by higher pain sensitivity and greater NeP incidence in women. This "gender gap" in our knowledge of sex differences in pain processing strongly limits the sex-oriented treatment of patients suffering from NeP. Besides, the current investigation of the analgesic potential of metformin has not addressed the "gender gap" problem. Hence, this study focuses on metformin and sex-dependent analgesia in a murine model of NeP induced by chronic constriction injury of the sciatic nerve. We investigated sexual dimorphism in signaling pathways involved by 7 days of metformin administration, such as changes in AMP-activated protein kinase and the positive regulation of autophagy machinery, discovering that metformin affected in a sexually dimorphic manner the immunological and inflammatory response to nerve lesion. These effects were complemented by morphological and adaptive changes occurring after peripheral nerve injury. Altogether these data can contribute to explaining a number of potential mechanisms responsible for the complete recovery from NeP found in male mice, as opposed to the failure of long-lasting recovery in female animals.


Asunto(s)
Analgésicos , Metformina , Neuralgia , Neuropatía Ciática , Caracteres Sexuales , Animales , Femenino , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Analgésicos/farmacología , Hiperalgesia/metabolismo , Metformina/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Nervio Ciático/metabolismo , Neuropatía Ciática/tratamiento farmacológico
8.
Front Pharmacol ; 13: 869606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721203

RESUMEN

The latest years have witnessed a growing interest towards the relationship between neuropsychiatric disease in children with autism spectrum disorders (ASD) and severe alterations in gut microbiota composition. In parallel, an increasing literature has focused the attention towards the association between derangement of the endocannabinoids machinery and some mechanisms and symptoms identified in ASD pathophysiology, such as alteration of neural development, immune system dysfunction, defective social interaction and stereotypic behavior. In this narrative review, we put together the vast ground of endocannabinoids and their partnership with gut microbiota, pursuing the hypothesis that the crosstalk between these two complex homeostatic systems (bioactive lipid mediators, receptors, biosynthetic and hydrolytic enzymes and the entire bacterial gut ecosystem, signaling molecules, metabolites and short chain fatty acids) may disclose new ideas and functional connections for the development of synergic treatments combining "gut-therapy," nutritional intervention and pharmacological approaches. The two separate domains of the literature have been examined looking for all the plausible (and so far known) overlapping points, describing the mutual changes induced by acting either on the endocannabinoid system or on gut bacteria population and their relevance for the understanding of ASD pathophysiology. Both human pathology and symptoms relief in ASD subjects, as well as multiple ASD-like animal models, have been taken into consideration in order to provide evidence of the relevance of the endocannabinoids-microbiota crosstalk in this major neurodevelopmental disorder.

9.
Br J Pharmacol ; 179(8): 1732-1752, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34783031

RESUMEN

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles and is currently incurable. Although considered to be a pure motor neuron disease, increasing evidence indicates that the sole protection of motor neurons by a single targeted drug is not sufficient to improve the pathological phenotype. We therefore evaluated the therapeutic potential of the multi-target drug used to treatment of coronary artery disease, trimetazidine, in SOD1G93A mice. EXPERIMENTAL APPROACH: As a metabolic modulator, trimetazidine improves glucose metabolism. Furthermore, trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration, exerting an anti-inflammatory and antioxidant effect. We orally treated SOD1G93A mice with trimetazidine, solubilized in drinking water at a dose of 20 mg kg-1 , from disease onset. We assessed the impact of trimetazidine on disease progression by studying metabolic parameters, grip strength and histological alterations in skeletal muscle, peripheral nerves and the spinal cord. KEY RESULTS: Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1G93A mice (increased median survival of 16 days and 12.5 days for male and female respectively). Moreover, trimetazidine prevents the degeneration of neuromuscular junctions, attenuates motor neuron loss and reduces neuroinflammation in the spinal cord and in peripheral nerves. CONCLUSION AND IMPLICATIONS: In SOD1G93A mice, therapeutic effect of trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Trimetazidina , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Femenino , Masculino , Ratones , Ratones Transgénicos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Trimetazidina/farmacología , Trimetazidina/uso terapéutico
10.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830036

RESUMEN

Tau cleavage plays a crucial role in the onset and progression of Alzheimer's Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)-a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic ß cells and to induce insulin resistance-mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-ß (Aß) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it's in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-ß axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Proteolisis , Estreptozocina/efectos adversos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/genética , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/genética , Masculino , Ratones , Ratones Transgénicos , Estreptozocina/farmacología , Proteínas tau/genética
11.
Front Cell Dev Biol ; 9: 696684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485283

RESUMEN

The dentate gyrus of the hippocampus and the subventricular zone are neurogenic niches where neural stem and progenitor cells replicate throughout life to generate new neurons. The Btg1 gene maintains the stem cells of the neurogenic niches in quiescence. The deletion of Btg1 leads to an early transient increase of stem/progenitor cells division, followed, however, by a decrease during adulthood of their proliferative capability, accompanied by apoptosis. Since a physiological decrease of neurogenesis occurs during aging, the Btg1 knockout mouse may represent a model of neural aging. We have previously observed that the defective neurogenesis of the Btg1 knockout model is rescued by the powerful neurogenic stimulus of physical exercise (running). To identify genes responsible for stem and progenitor cells maintenance, we sought here to find genes underlying this premature neural aging, and whose deregulated expression could be rescued by running. Through RNA sequencing we analyzed the transcriptomic profiles of the dentate gyrus isolated from Btg1 wild-type or Btg1 knockout adult (2-month-old) mice submitted to physical exercise or sedentary. In Btg1 knockout mice, 545 genes were deregulated, relative to wild-type, while 2081 genes were deregulated by running. We identified 42 genes whose expression was not only down-regulated in the dentate gyrus of Btg1 knockout, but was also counter-regulated to control levels by running in Btg1 knockout mice, vs. sedentary. Among these 42 counter-regulated genes, alpha-synuclein (Snca), Fos, Arc and Npas4 showed significantly greater differential regulation. These genes control neural proliferation, apoptosis, plasticity and memory and are involved in aging. In particular, Snca expression decreases during aging. We tested, therefore, whether an Snca-expressing lentivirus, by rescuing the defective Snca levels in the dentate gyrus of Btg1 knockout mice, could also reverse the aging phenotype, in particular the defective neurogenesis. We found that the exogenous expression of Snca reversed the Btg1 knockout-dependent decrease of stem cell proliferation as well as the increase of progenitor cell apoptosis. This indicates that Snca has a functional role in the process of neural aging observed in this model, and also suggests that Snca acts as a positive regulator of stem cell maintenance.

12.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299330

RESUMEN

The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer's disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-ß peptide (Aß). The morphological evaluation showed that Aß treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aß. Moreover, URB597 reduced both the increase of Rho protein activation in Aß-treated BV-2 cells and the Aß-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/farmacología , Carbamatos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amidohidrolasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Ácidos Araquidónicos/metabolismo , Línea Celular , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Citocinas/metabolismo , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Ratones , Microglía/patología , Alcamidas Poliinsaturadas/metabolismo
13.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922372

RESUMEN

Neuropathic pain (NeP) in humans is often a life-long condition with no effective therapy available. The higher incidence of female gender in NeP onset is worldwide reported, and although the cause is generally attributed to sex hormones, the actual mechanisms and the players involved are still unclear. Glial and immune cells take part in NeP development, and orchestrate the neuroimmune and inflammatory response, releasing pro-inflammatory factors with chemoattractant properties that activate resident immune cells and recruit immune cells from circulation. The neuro-immune crosstalk is a key contributor to pain hypersensitivity following peripheral nervous system injury. Our previous works showed that in spite of the fact that female mice had an earlier analgesic response than males following nerve lesion, the recovery from NeP was never complete, suggesting that this difference could occur in the very early stages after injury. To further investigate gender differences in immune and neuroimmune responses to NeP, we studied the main immune cells and mediators elicited both in plasma and sciatic nerves by peripheral nerve lesion. After injury, we found a different pattern of distribution of immune cell populations showing either a higher infiltration of T cells in nerves from females or a higher infiltration of macrophages in nerves from males. Moreover, in comparison to male mice, the levels of cytokines and chemokines were differently up- and down-regulated in blood and nerve lysates from female mice. Our study provides some novel insights for the understanding of gender-associated differences in the generation and perseveration of NeP as well as for the isolation of specific neurodegenerative mechanisms underlying NeP. The identification of gender-associated inflammatory profiles in neuropathy is of key importance for the development of differential biomarkers and gender-specific personalized medicine.


Asunto(s)
Gliosis/patología , Hiperalgesia/patología , Inflamación/patología , Macrófagos/patología , Neuralgia/patología , Traumatismos de los Nervios Periféricos/complicaciones , Nervio Ciático/patología , Animales , Citocinas , Femenino , Gliosis/etiología , Hiperalgesia/etiología , Inflamación/etiología , Masculino , Ratones , Neuralgia/etiología , Factores Sexuales
14.
Acta Neuropathol Commun ; 9(1): 38, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750467

RESUMEN

Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-ß (Aß) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20-22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aß processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Inmunoglobulinas Intravenosas/inmunología , Inmunoglobulinas Intravenosas/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/etiología , Proteínas tau/química , Proteínas tau/inmunología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/aislamiento & purificación , Anticuerpos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Inmunoglobulinas Intravenosas/administración & dosificación , Ratones , Ratones Transgénicos , Mitocondrias/patología , Neuronas , Placa Amiloide/patología , Retina/patología , Degeneración Retiniana/patología , Sinapsis/metabolismo
15.
Brain Commun ; 2(1): fcaa039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954296

RESUMEN

Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidß metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidß-dependent and independent neuropathological and cognitive alterations in affected subjects.

16.
Artículo en Inglés | MEDLINE | ID: mdl-32528404

RESUMEN

Whole-body energy metabolism entails the highly regulated balance between food intake, nutrient breakdown, energy generation (ATP), and energy storage for the preservation of vital functions and body mass. Purinergic signaling has attracted increasing attention in the regulatory mechanisms not only for the reverse processes of white adipose tissue lipogenesis and lipolysis, but also for brown adipocyte-dependent thermogenesis and leptin production. This regulatory role has remarkable implications in the handling of body's energy expenditure and energy reservoir. Hence, selected purinergic receptors can play a relevant function in lipid metabolism, endocrine activity, glucose uptake, ATP-dependent increased expression of uncoupling protein 1, and browning of adipose tissue. Indeed, purinergic P2 receptors regulate adipogenesis and lipid metabolism and are involved in adipogenic differentiation. In particular, the ionotropic ATP-activated P2X7 subtype is involved in fat distribution, as well as in the modulation of inflammatory pathways in white adipose tissue. Within this context, very recent evidence has established a direct function of P2X7 in energy metabolism. Specifically, either genetic deletion (P2X7 knockout mice) or subchronic pharmacological inhibition of the receptor produces a decrease of whole-body energy expenditure and, concurrently, an increase of carbohydrate oxidation. As further evidence, lipid accumulation, increased fat mass distribution, and weight gain are reported in P2X7-depleted mice. Conversely, the stimulation of P2X7 enhances energy expenditure. Altogether, this knowledge supports the role of P2X7 signaling in the fight against obesity and insulin resistance, as well as in the promotion of adaptive thermogenesis.


Asunto(s)
Dislipidemias/genética , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Obesidad/genética , Receptores Purinérgicos P2X7/fisiología , Animales , Dislipidemias/metabolismo , Femenino , Homeostasis/genética , Humanos , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Noqueados , Obesidad/metabolismo , Receptores Purinérgicos P2X7/genética , Termogénesis/genética , Termogénesis/fisiología
17.
iScience ; 23(5): 101087, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32371370

RESUMEN

Patients with ALS show, in addition to the loss of motor neurons in the spinal cord, brainstem, and cerebral cortex, an abnormal depletion of energy stores alongside hypermetabolism. In this study, we show that bioenergetic defects and muscle remodeling occur in skeletal muscle of the SOD1G93A mouse model of ALS mice prior to disease onset and before the activation of muscle denervation markers, respectively. These changes in muscle physiology were followed by an increase in energy expenditure unrelated to physical activity. Finally, chronic treatment of SOD1G93A mice with Ranolazine, an FDA-approved inhibitor of fatty acid ß-oxidation, led to a decrease in energy expenditure in symptomatic SOD1G93A mice, and this occurred in parallel with a robust, albeit temporary, recovery of the pathological phenotype.

18.
Biomolecules ; 10(1)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861745

RESUMEN

The gut-brain axis is a multimodal communication system along which immune, metabolic, autonomic, endocrine and enteric nervous signals can shape host physiology and determine liability, development and progression of a vast number of human diseases. Here, we broadly discussed the current knowledge about the either beneficial or deleterious impact of dietary fatty acids on microbiota-brain communication (MBC), and the multiple mechanisms by which different types of lipids can modify gut microbial ecosystem and contribute to the pathophysiology of major neuropsychiatric diseases (NPDs), such as schizophrenia (SCZ), depression and autism spectrum disorders (ASD).


Asunto(s)
Trastorno del Espectro Autista/microbiología , Encéfalo/fisiología , Depresión/microbiología , Ácidos Grasos/metabolismo , Microbioma Gastrointestinal , Esquizofrenia/microbiología , Animales , Trastorno del Espectro Autista/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Humanos , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología
19.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514437

RESUMEN

There is robust evidence indicating that enhancing the endocannabinoid (eCB) tone has therapeutic potential in several brain disorders. The inhibition of eCBs degradation by fatty acid amide hydrolase (FAAH) blockade, is the best-known option to increase N-acyl-ethanolamines-(NAEs)-mediated signaling. Here, we investigated the hypothesis that intranasal delivery is an effective route for different FAAH inhibitors, such as URB597 and PF-04457845. URB597 and PF-04457845 were subchronically administered in C57BL/6 male mice every other day for 20 days for overall 10 drug treatment, and compared for their ability to inhibit FAAH activity by the way of three different routes of administration: intranasal (i.n.), intraperitoneal (i.p.) and oral (p.o.). Lastly, we compared the efficacy of the three routes in terms of URB597-induced increase of NAEs levels in liver and in different brain areas. Results: We show that PF-04457845 potently inhibits FAAH regardless the route selected, and that URB597 was less effective in the brain after p.o. administration while reached similar effects by i.n. and i.p. routes. Intranasal URB597 delivery always increased NAEs levels in brain areas, whereas a parallel increase was not observed in the liver. By showing the efficacy of intranasal FAAH inhibition, we provide evidence that nose-to-brain delivery is a suitable alternative to enhance brain eCB tone for the treatment of neurodegenerative disorders and improve patients' compliance.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Amidohidrolasas/metabolismo , Animales , Benzamidas/administración & dosificación , Benzamidas/farmacología , Carbamatos/administración & dosificación , Carbamatos/farmacología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Endocannabinoides/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Piridazinas/administración & dosificación , Piridazinas/farmacología , Urea/administración & dosificación , Urea/análogos & derivados , Urea/farmacología
20.
Front Cell Neurosci ; 13: 390, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496939

RESUMEN

The P2X7 receptor, a member of the ionotropic purinergic P2X family of extracellular ATP-gated receptors, exerts strong trophic effects when tonically activated in cells, in addition to cytotoxic effects after a sustained activation. Because of its widespread distribution, P2X7 regulates several cell- and tissue-specific physiological functions, and is involved in a number of disease conditions. A novel role has recently emerged for P2X7 in the regulation of glucose and energy metabolism. In previous work, we have demonstrated that genetic depletion, and to a lesser extent also pharmacological inhibition of P2X7, elicits a significant decrease of the whole body energy expenditure and an increase of the respiratory exchange ratio. In the present work, we have investigated the effects of P2X7 stimulation in vivo on the whole body energy metabolism. Adult mice were daily injected with the specific P2X7 agonist 2'(3')-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate for 1 week and subjected to indirect calorimetric analysis for 48 h. We report that 2'(3')-O-(4-Benzoylbenzoyl)adenosine 5'-triphosphate increases metabolic rate and O2 consumption, concomitantly decreasing respiratory rate and upregulating NADPH oxidase 2 in gastrocnemius and tibialis anterior muscles. Our results indicate a major impact on energy homeostasis and muscle metabolism by activation of P2X7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...