Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(4): e0120723, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38441975

RESUMEN

The complete genome sequence of the most ancestral type SI strain of Mycobacterium avium subspecies paratuberculosis 6756, isolated from a sheep, was determined. The genome was sequenced using PacBio technology, yielding a genome size of 4,830,294 nucleotides with no identified plasmids.

2.
Animals (Basel) ; 13(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37665671

RESUMEN

One of the obstacles to eradicating paratuberculosis or Johne's Disease (JD) seems to be the persistence of Mycobacterium avium subsp. paratuberculosis (Map) in the environment due to its ability to survive alone or vectorized. It has been shown that Map is widely distributed in soils and water. Previously, we isolated amoebae associated with Map strains in the environment of bovines from an infected herd. This work aims to verify our working hypothesis, which suggests that amoebae may play a role in the transmission of JD. In this study, we sampled water in the vicinity of herds infected with Map or Mycobacterium bovis (M. bovis) and searched for amoebae and mycobacteria. Live amoebae were recovered from all samples. Among these amoebae, four isolates associated with the presence of mycobacteria were identified and characterized. Map and other mycobacterial species were detected by qPCR and, in some cases, by culture. This study suggests that amoebae and Map may be found in the same environment and might represent a risk of exposure of animals to pathogenic mycobacteria. These data open up new perspectives on the control measures to be put in place to prevent contamination by Map.

3.
Microorganisms ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677470

RESUMEN

Mammalian tuberculosis (TB) is a zoonotic disease mainly due to Mycobacterium bovis (M. bovis). A current challenge for its eradication is understanding its transmission within multi-host systems. Improvements in long-read sequencing technologies have made it possible to obtain complete bacterial genomes that provide a comprehensive view of species-specific genomic features. In the context of TB, new genomic references based on complete genomes genetically close to field strains are also essential to perform precise field molecular epidemiological studies. A total of 10 M. bovis strains representing each genetic lineage identified in France and in other countries were selected for performing complete assembly of their genomes. Pangenome analysis revealed a "closed" pangenome composed of 3900 core genes and only 96 accessory genes. Whole genomes-based alignment using progressive Mauve showed remarkable conservation of the genomic synteny except that the genomes have a variable number of copies of IS6110. Characteristic genomic traits of each lineage were identified through the discovery of specific indels. Altogether, these results provide new genetic features that improve the description of M. bovis lineages. The availability of new complete representative genomes of M. bovis will be useful to epidemiological studies and better understand the transmission of this clonal-evolving pathogen.

4.
Microbiol Spectr ; 10(6): e0339222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445077

RESUMEN

Paratuberculosis is a chronic infection of the intestine, mainly the ileum, caused by Mycobacterium avium subsp. paratuberculosis in cattle and other ruminants. This enzootic disease is present worldwide and has a negative impact on the dairy cattle industry. For this subspecies, the current genotyping tools do not provide the needed resolution to investigate the genetic diversity of closely related strains. These limitations can be overcome by the application of whole-genome sequencing (WGS), particularly for clonal populations such as M. avium subsp. paratuberculosis. The purpose of the present study was to undertake a WGS analysis with a panel of 200 animal field M. avium subsp. paratuberculosis strains selected based on a previous large-scale longitudinal study of Prim'Holstein and Normande dairy breeds naturally infected with M. avium subsp. paratuberculosis in the West of France. The pangenome analysis revealed that M. avium subsp. paratuberculosis has a closed pangenome. The phylogeny, based on alignment of 2,786 nonhomoplasic single nucleotide polymorphisms (SNPs), showed that the strain population is structured into three clades independently of the cattle breed or geographic distribution. The increased resolution of phylogeny obtained by WGS confirmed the homoplasic nature of the markers variable-number tandem repeat (VNTR) and short sequence repeat (SSR) used for M. avium subsp. paratuberculosis genotyping. These phylogenetic data also revealed independent introductions of the different genotypes in two main waves since at least 2003. WGS applied to this sampling demonstrated the presence of mixed infections in herds and at the individual animal level. Collectively, the phylogeny results inferred with French isolates compared to M. avium subsp. paratuberculosis isolates from around the world suggest introductions of M. avium subsp. paratuberculosis genotypes through the animal trade. Relationships between genetic traits and epidemiological data can now be investigated to better understand transmission dynamics of the disease. IMPORTANCE Mycobacterium avium subsp. paratuberculosis causes Johne's disease in ruminants, which is present worldwide and has significant negative impacts on the dairy cattle industry and animal welfare. Prevention and control of M. avium subsp. paratuberculosis infection are hampered by knowledge gaps in strain virulence, genotype distribution, and transmission dynamics. This work has revealed new insights into M. avium subsp. paratuberculosis strains currently circulating in western France and how they are related to strains circulating globally. We applied whole-genome sequencing (WGS) to obtain comprehensive information on genome evolution and discrimination of closely related strains. This approach revealed the history of M. avium subsp. paratuberculosis infection in France, refined the pangenomic characteristics of M. avium subsp. paratuberculosis, and demonstrated the existence of mixed infection in animals. Finally, this study identified predominant genotypes, which allow a better understanding of disease transmission dynamics. This information will facilitate tracking of this pathogen on farms and across agricultural regions, thus informing transmission pathways and disease control points.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculosis/epidemiología , Paratuberculosis/microbiología , Filogenia , Estudios Longitudinales , Rumiantes
5.
Eur J Med Chem ; 239: 114531, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759907

RESUMEN

Isoniazid is a cornerstone of modern tuberculosis (TB) therapy and targets the enoyl ACP reductase InhA, a key enzyme in mycolic acid biosynthesis. InhA is still a promising target for the development of new anti-TB drugs. Herein, we report the design, synthesis, and anti-tubercular activity of new isoniazid hybrids. Among these, 1H-1,2,3 triazole-tethered quinoline-isoniazid conjugates 16a to 16g exhibited high activity against Mycobacterium tuberculosis with minimal inhibitory concentrations in the 0.25-0.50 µg/mL range and were bactericidal in vitro. Importantly, these compounds were well tolerated at high doses on mammalian cells, leading to high selectivity indices. The hybrids were dependent on functional KatG production to inhibit mycolic acid biosynthesis. Moreover, overexpression of InhA in M. tuberculosis resulted in high resistance levels to 16a-16g and reduced mycolic acid biosynthesis inhibition, similar to isoniazid. Overall, these findings suggest that the synthesized quinoline-isoniazid hybrids are promising anti-tubercular molecules, which require further pre-clinical evaluation.


Asunto(s)
Mycobacterium tuberculosis , Quinolinas , Tuberculosis , Animales , Antituberculosos/farmacología , Proteínas Bacterianas , Isoniazida/farmacología , Mamíferos , Ácidos Micólicos , Quinolinas/farmacología
6.
Microbiol Resour Announc ; 10(38): e0069721, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34553988

RESUMEN

Mycobacterium avium subsp. paratuberculosis is the etiological agent of Johne's disease in ruminants. Here, we report the annotated draft genome sequences of 142 M. avium subsp. paratuberculosis strains that were isolated from dairy cattle in France between 2014 and 2018. The genomes of these strains were sequenced using Illumina technology.

7.
Front Microbiol ; 12: 675597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349737

RESUMEN

We explored the relevance of a Clustered regularly interspaced short palindromic repeats (CRISPR)-based genotyping tool for Streptococcus agalactiae typing and we compared this method to current molecular methods [multi locus sequence typing (MLST) and capsular typing]. To this effect, we developed two CRISPR marker schemes (using 94 or 25 markers, respectively). Among the 255 S. agalactiae isolates tested, 229 CRISPR profiles were obtained. The 94 and 25 markers made it possible to efficiently separate isolates with a high diversity index (0.9947 and 0.9267, respectively), highlighting a high discriminatory power, superior to that of both capsular typing and MLST (diversity index of 0.9017 for MLST). This method has the advantage of being correlated with MLST [through analysis of the terminal direct repeat (TDR) and ancestral spacers] and to possess a high discriminatory power (through analysis of the leader-end spacers recently acquired, which are the witnesses of genetic mobile elements encountered by the bacteria). Furthermore, this "one-shot" approach presents the benefit of much-reduced time and cost in comparison with MLST. On the basis of these data, we propose that this method could become a reference method for group B Streptococcus (GBS) typing.

8.
Front Microbiol ; 12: 660002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040595

RESUMEN

Mycobacterium avium subsp. paratuberculosis (Map) is the etiological agent of Johne's disease in ruminants. The IS900 insertion sequence (IS) has been used widely as an epidemiological marker and target for PCR diagnosis. Updated DNA sequencing technologies have led to a rapid increase in available Map genomes, which makes it possible to analyze the distribution of IS900 in this slow-growing bacterium. The objective of this study is to characterize the distribution of the IS900 element and how it affects genomic evolution and gene function of Map. A secondary goal is to develop automated in silico restriction fragment length polymorphism (RFLP) analysis using IS900. Complete genomes from the major phylogenetic lineages known as C-type and S-type (including subtypes I and III), were chosen to represent the genetic diversity of Map. IS900 elements were located in these genomes using BLAST software and the relevant fragments extracted. An in silico RFLP analysis using the BstEII restriction site was performed to obtain exact sizes of the DNA fragments carrying a copy of IS900 and the resulting RFLP profiles were analyzed and compared by digital visualization of the separated restriction fragments. The program developed for this study allowed automated localization of IS900 sequences to identify their position within each genome along with the exact number of copies per genome. The number of IS900 copies ranged from 16 in the C-type isolate to 22 in the S-type subtype I isolate. A loci-by-loci sequence alignment of all IS900 copies within the three genomes revealed new sequence polymorphisms that define three sequevars distinguishing the subtypes. Nine IS900 insertion site locations were conserved across all genomes studied while smaller subsets were unique to a particular lineage. Preferential insertion motif sequences were identified for IS900 along with genes bordering all IS900 insertions. Rarely did IS900 insert within coding sequences as only three genes were disrupted in this way. This study makes it possible to automate IS900 distribution in Map genomes to enrich knowledge on the distribution dynamics of this IS for epidemiological purposes, for understanding Map evolution and for studying the biological implications of IS900 insertions.

9.
Front Vet Sci ; 8: 637841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33969035

RESUMEN

Unlike other MAC members, Mycobacterium avium subsp. paratuberculosis (MAP) does not produce glycopeptidolipids (GPL) on the surface of the cell wall but a lipopentapeptide called L5P (also termed Lipopeptide-I or Para-LP-01) characterized in C-type (bovine) strains. This lipopeptide antigen contains a pentapeptide core, D-Phenylalanine-N-methyl-L-Valine-L-Isoleucine-L-Phenylalanine-L-Alanine, in which the N-terminal D-Phenylalanine is amido-linked with a fatty acid (C18-C20). The molecular and genetic characterization of this antigen demonstrated that L5P is unique to MAP. Knowledge of the structure of L5P enabled synthetic production of this lipopeptide in large quantities for immunological evaluation. Various studies described the immune response directed against L5P and confirmed its capability for detection of MAP infection. However, the hydrophobic nature of lipopeptide antigens make their handling and use in organic solvents unsuitable for industrial processes. The objectives of this study were to produce, by chemical synthesis, a water-soluble variant of L5P and to evaluate these compounds for the serological diagnosis of MAP using well-defined serum banks. The native L5P antigen and its hydrosoluble analog were synthesized on solid phase. The pure compounds were evaluated on collections of extensively characterized sera from infected and non-infected cattle. ROC analysis showed that L5P and also its water-soluble derivative are suitable for the development of a serological test for Johne's disease at a population level. However, these compounds used alone in ELISA have lower sensitivity (Se 82% for L5P and Se 62% for the water-soluble variant of L5P) compared to the Se 98% of a commercial test. Advantageously, these pure synthetic MAP specific antigens can be easily produced in non-limiting quantities at low cost and in standardized batches for robust studies. The fact that L5P has not been validated in the context of ovine paratuberculosis highlights the need to better characterize the antigens expressed from the different genetic lineages of MAP to discover new diagnostic antigens. In the context of infections due to other mycobacteria such as M. bovis or the more closely related species M. avium subsp. hominissuis, the L5P did not cross react and therefore may be a valuable antigen to solve ambiguous results in other tests.

10.
Microorganisms ; 8(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751435

RESUMEN

The Mycobacterium avium complex includes two closely related species, Mycobacterium avium and Mycobacterium intracellulare. They are opportunistic pathogens in humans and responsible for severe disease in a wide variety of animals. Yet, little is known about factors involved in their pathogenicity. Here, we identified, purified and characterized adhesins belonging to the heparin-binding hemagglutinin (HBHA) and laminin-binding protein (LBP) family from M. intracellulare ATCC13950 and examined clinical isolates from patients with different pathologies associated with M. intracellulare infection for the presence and conservation of HBHA and LBP. Using a recombinant derivative strain of M. intracellulare ATCC13950 producing green fluorescent protein and luciferase, we found that the addition of heparin inhibited mycobacterial adherence to A549 cells, whereas the addition of laminin enhanced adherence. Both HBHA and LBP were purified by heparin-Sepharose chromatography and their methylation profiles were determined by mass spectrometry. Patients with M. intracellulare infection mounted strong antibody responses to both proteins. By using PCR and immunoblot analyses, we found that both proteins were highly conserved among all 17 examined clinical M. intracellulare isolates from patients with diverse disease manifestations, suggesting a conserved role of these adhesins in M. intracellulare virulence in humans and their potential use as a diagnostic tool.

11.
Infect Genet Evol ; 82: 104309, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32240800

RESUMEN

Mycobacterium bovis strain Mb3601 was isolated from the lymph node of an infected bovine in a bovine tuberculosis highly enzoonotic area of Burgundy, France. It was selected to obtain a complete genome for a new clonal complex, mainly constituted by SB0120-spoligotype strains that we propose to name "European 3". It was recently described as "clonal group I" based on whole-genome SNP analysis of 87 French strains. Here we describe the 4,365,068 bp complete genome obtained by the combination of PacBio and Illumina technologies. This genome of 65.64% G + C content includes 4024 predicted protein-coding genes, 52 tRNA, 3 rRNA and 11 copies of IS6110.


Asunto(s)
Genoma Bacteriano , Mycobacterium bovis/genética , Animales , Bovinos , Francia , Tuberculosis Bovina/microbiología , Secuenciación Completa del Genoma
12.
Microbiol Resour Announc ; 9(5)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001563

RESUMEN

Streptococcus agalactiae is a major pathogen and is the leading cause of neonatal infections in industrialized countries. The diversity of strains isolated from two pregnant women was investigated. Here, we present the draft genome sequences of strains W8A2, W8A6, W10E2, and W10F3, obtained in order to ascertain their phylogenetic affiliation.

13.
Infect Genet Evol ; 77: 104075, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31634642

RESUMEN

Genotyping of Mycobacterium avium subsp. paratuberculosis (Map) is an indispensable tool for surveillance of this significant veterinary pathogen. For Map, multi-locus variable number tandem repeat analysis (MLVA) targeting mycobacterial interspersed repetitive units (MIRUs) and other variable number variable-number tandem repeats (VNTRs) was established using 8 markers. In the recent past this standard, portable, reproducible and discriminatory typing method has been frequently applied alone or in combinations with multi-locus short-sequence-repeat (MLSSR) sequencing. With the widespread use of these genotyping methods, standardization between laboratories needs to be managed, and knowledge of existing profiles and newly defined genotypes should be indexed and shared. To meet this need, a web application called "MAC-INMV-SSR database" was developed. This freely accessible service allows users to compare MLVA and MLSSR subtype data of their strains with those of existing reference strains analyzed with the same genotyping methods.


Asunto(s)
Biología Computacional/métodos , Técnicas de Genotipaje/normas , Complejo Mycobacterium avium/clasificación , Marcadores Genéticos , Técnicas de Genotipaje/métodos , Internet , Repeticiones de Microsatélite , Repeticiones de Minisatélite , Tipificación de Secuencias Multilocus/métodos , Tipificación de Secuencias Multilocus/normas , Complejo Mycobacterium avium/genética , Mycobacterium avium subsp. paratuberculosis/clasificación , Mycobacterium avium subsp. paratuberculosis/genética , Programas Informáticos
14.
Microorganisms ; 7(12)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842292

RESUMEN

Bovine tuberculosis (TB) is a zoonotic disease, mainly caused by Mycobacterium bovis. France was declared officially TB free in 2001, however, the disease persists in livestock and wildlife. Among wild animals, deer are particularly susceptible to bovine TB. Here, a whole genome sequence (WGS) analysis was performed on strains with the same genetic profile-spoligotype SB0121, Multiple Loci VNTR Analysis (MLVA) 6 4 5 3 11 2 5 7-isolated from different types of outbreaks, including from deer or cattle herds, or zoological or hunting parks where the presence of infected deer was a common trait in most of them. The results of the phylogeny based on the SNP calling shows that two sub-clusters co-exist in France, one related to deer bred to be raised as livestock, and the other to hunting parks and zoos. The persistence over almost 30 years of sporadic cases due to strains belonging to these clusters highlights the deficiency in the surveillance of captive wildlife and the need for better monitoring of animals, especially before movement between parks or herds.

15.
Front Microbiol ; 10: 955, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31130937

RESUMEN

In recent years the diversity of the French Mycobacterium bovis population responsible for bovine tuberculosis (bTB) outbreaks since 1970 has been described in detail. To further understand bTB evolution in France, we used single nucleotide polymorphisms (SNPs) based on whole genome sequence versus classical genotyping methods in order to identify accurate phylogenetic relationships between M. bovis strains. Whole genome sequencing was carried out on a selection of 87 strains which reflect the French M. bovis population's genetic diversity. Sequences were compared to the M. bovis reference genome AF2122/97. Comparison among the 87 genomes revealed 9,170 sites where at least one strain shows a SNP with respect to the reference genome; 1,172 are intergenic and 7,998 in coding sequences, of which 2,880 are synonymous and 5,118 non-synonymous. SNP-based phylogenetic analysis using these 9,170 SNP is congruent with the cluster defined by spoligotyping and multilocus variable number of tandem repeat analysis typing. In addition, some SNPs were identified as specific to genotypic groups. These findings suggest new SNP targets that can be used for the development of high-resolving methods for genotyping as well as for studying M. bovis evolution and transmission patterns. The detection of non-synonymous SNPs on virulence genes enabled us to distinguish different clusters. Our results seem to indicate that genetically differentiated clusters could also display distinctive phenotypic traits.

16.
Cell Rep ; 27(9): 2649-2664.e5, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141689

RESUMEN

Lung inflammation induced by silica impairs host control of tuberculosis, yet the underlying mechanism remains unclear. Here, we show that silica-driven exacerbation of M. tuberculosis infection associates with raised type 2 immunity. Silica increases pulmonary Th2 cell and M2 macrophage responses, while reducing type 1 immunity after M. tuberculosis infection. Silica induces lung damage that prompts extracellular self-DNA release and activates STING. This STING priming potentiates M. tuberculosis DNA sensing by and activation of cGAS/STING, which triggers enhanced type I interferon (IFNI) response and type 2 immunity. cGAS-, STING-, and IFNAR-deficient mice are resistant to silica-induced exacerbation of M. tuberculosis infection. Thus, silica-induced self-DNA primes the host response to M. tuberculosis-derived nucleic acids, which increases type 2 immunity while reducing type 1 immunity, crucial for controlling M. tuberculosis infection. These data show how cGAS/STING pathway activation, at the crossroads of sterile inflammation and infection, may affect the host response to pathogens such as M. tuberculosis.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Proteínas de la Membrana/fisiología , Mycobacterium tuberculosis/inmunología , Neumonía/complicaciones , Dióxido de Silicio/toxicidad , Tuberculosis/etiología , Animales , Células Dendríticas , Factor 3 Regulador del Interferón/fisiología , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/fisiología , Neumonía/inducido químicamente , Receptor de Interferón alfa y beta/fisiología , Transducción de Señal , Tuberculosis/metabolismo , Tuberculosis/patología
17.
Artículo en Inglés | MEDLINE | ID: mdl-29479518

RESUMEN

Mycobacterium avium subsp. paratuberculosis is responsible for paratuberculosis in animals. This disease, leading to an inflammation of the gastrointestinal tract, has a high impact on animal health and an important economic burden. The environmental life cycle of M. avium subsp. paratuberculosis is poorly understood and several studies suggest that free-living amoebae (FLA) might be a potential environmental host. FLA are protozoa found in water and soil that are described as reservoirs of pathogenic and non-pathogenic bacteria in the environment. Indeed, bacteria able to survive within these amoebae would survive phagocytosis from immune cells. In this study, we assessed the in vitro interactions between several strains of M. avium subsp. paratuberculosis and Acanthamoeba castellanii. The results indicate that the bacteria were able to grow within the amoeba and that they can survive for several days within their host. To explore the presence of M. avium subsp. paratuberculosis in environmental amoebae, we sampled water from farms positive for paratuberculosis. A M. avium subsp. paratuberculosis strain was detected within an environmental amoeba identified as related to the poorly described Rosculus genus. The bacterial strain was genotyped, showing that it was similar to previous infectious strains isolated from cattle. In conclusion, we described that various M. avium subsp. paratuberculosis strains were able to grow within amoebae and that these bacteria could be found on farm within amoebae isolated from the cattle environment. It validates that infected amoebae might be a reservoir and vector for the transmission of M. avium subsp. paratuberculosis.


Asunto(s)
Amoeba/microbiología , Microbiología Ambiental , Mycobacterium avium subsp. paratuberculosis/clasificación , Paratuberculosis/microbiología , Animales , Genoma Bacteriano , Genotipo , Tipificación de Secuencias Multilocus , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/aislamiento & purificación , Fagosomas/metabolismo , Fagosomas/microbiología , Secuencias Repetidas en Tándem
18.
Genome Announc ; 5(27)2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684564

RESUMEN

Mycobacterium bovis is the etiologic agent of bovine tuberculosis, a chronic infectious disease affecting livestock, wild animals, and sometimes humans. We report here three draft genome sequences of Mycobacterium bovis strains of spoligotypes SB0821 and SB0134, isolated from wildlife but circulating in wildlife-livestock multihost systems, and SB0121, circulating exclusively in cattle.

19.
Mol Microbiol ; 105(4): 525-539, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28558126

RESUMEN

Mycobacteria have a complex cell wall structure that includes many lipids; however, even within a single subspecies of Mycobacterium avium these lipids can differ. Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide (L5P), yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis as well as biochemical and physico-chemical approaches. This strategy showed that a nonribosomal peptide synthase, encoded by mps1, contains three amino acid specifying modules in ovine strains, compared to five modules in bovine strains (C-type). Sequence analysis predicted these modules would produce the tripeptide Phe-N-Methyl-Val-Ala with a lipid moiety, termed lipotripeptide (L3P). Comprehensive physico-chemical analysis of Map S397 extracts confirmed the structural formula of the native L3P as D-Phe-N-Methyl-L-Val-L-Ala-OMe attached in N-ter to a 20-carbon fatty acid chain. These data demonstrate that S-type strains, which are more adapted in sheep, produce a unique lipid. There is a dose-dependent effect observed for L3P on upregulation of CD25+ CD8 T cells from infected cows, while L5P effects were static. In contrast, L5P demonstrated a significantly stronger induction of CD25+ B cells from infected animals compared to L3P.


Asunto(s)
Pared Celular/genética , Lípidos de la Membrana/genética , Péptido Sintasas/genética , Secuencia de Aminoácidos , Pared Celular/metabolismo , Pared Celular/fisiología , Lípidos de la Membrana/química , Mycobacterium avium/genética , Mycobacterium avium/metabolismo , Péptidos/genética , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
20.
Genome Announc ; 4(6)2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27834714

RESUMEN

Mycobacterium bovis is the etiologic agent of bovine tuberculosis, a chronic infectious disease, affecting livestock, wild animals, and sometimes humans. We report the draft genome sequence of a Mycobacterium bovis strain isolated from wild boar of spoligotype SB0120 (or BCG-like) also present in wildlife-livestock multi-host systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...