Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 31(3): 489-497, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177686

RESUMEN

Transcription generates local topological and mechanical constraints on the DNA fiber, leading to the generation of supercoiled chromosome domains in bacteria. However, the global impact of transcription on chromosome organization remains elusive, as the scale of genes and operons in bacteria remains well below the resolution of chromosomal contact maps generated using Hi-C (~5-10 kb). Here we combined sub-kb Hi-C contact maps and chromosome engineering to visualize individual transcriptional units. We show that transcriptional units form discrete three-dimensional transcription-induced domains that impose mechanical and topological constraints on their neighboring sequences at larger scales, modifying their localization and dynamics. These results show that transcriptional domains constitute primary building blocks of bacterial chromosome folding and locally impose structural and dynamic constraints.


Asunto(s)
Cromosomas Bacterianos , Cromosomas , Cromosomas Bacterianos/genética , ADN
2.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
3.
Nucleic Acids Res ; 50(5): 2635-2650, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35212387

RESUMEN

In bacteria, chromosome segregation occurs progressively from the origin to terminus within minutes of replication of each locus. Between replication and segregation, sister loci are held in an apparent cohesive state by topological links. The decatenation activity of topoisomerase IV (Topo IV) is required for segregation of replicated loci, yet little is known about the structuring of the chromosome maintained in a cohesive state. In this work, we investigated chromosome folding in cells with altered decatenation activities. Within minutes after Topo IV inactivation, massive chromosome reorganization occurs, associated with increased in contacts between nearby loci, likely trans-contacts between sister chromatids, and in long-range contacts between the terminus and distant loci. We deciphered the respective roles of Topo III, MatP and MukB when TopoIV activity becomes limiting. Topo III reduces short-range inter-sister contacts suggesting its activity near replication forks. MatP, the terminus macrodomain organizing system, and MukB, the Escherichia coli SMC, promote long-range contacts with the terminus. We propose that the large-scale conformational changes observed under these conditions reveal defective decatenation attempts involving the terminus area. Our results support a model of spatial and temporal partitioning of the tasks required for sister chromosome segregation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Replicación del ADN/genética , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
Methods Mol Biol ; 2301: 183-195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34415536

RESUMEN

During the past decade, Chromosome Conformation Capture (3C/Hi-C)-based methods have been used to probe the 3D structure and organization of bacterial genomes, revealing fundamental aspects of chromosome dynamics. However, the current protocols are expensive, inefficient, and limited in their resolution. Here we present a simple, cost-effective Hi-C approach that is readily applicable to a range of Gram-positive and Gram-negative bacteria.


Asunto(s)
Bacterias Gramnegativas , Bacterias Grampositivas , Antibacterianos , Bacterias/genética , Cromosomas , Bacterias Gramnegativas/genética , Programas Informáticos
5.
PLoS Genet ; 17(8): e1009717, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432790

RESUMEN

Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks. Using a tool creating a site-specific, repairable DSB on only one of a pair of replicating sister chromosomes, we have determined how these branched DNA intermediates are distributed across a DNA region that is undergoing DSB repair. In cells, where branch migration and cleavage of HJs are limited by inactivation of the RuvABC complex, HJs and repair forks are principally accumulated within a distance of 12 kb from sites of recombination initiation, known as Chi, on each side of the engineered DSB. These branched DNA structures can even be detected in the region of DNA between the Chi sites flanking the DSB, a DNA segment not expected to be engaged in recombination initiation, and potentially degraded by RecBCD nuclease action. This is observed even in the absence of the branch migration and helicase activities of RuvAB, RadA, RecG, RecQ and PriA. The detection of full-length DNA fragments containing HJs in this central region implies that DSB repair can restore the two intact chromosomes, into which HJs can relocate prior to their resolution. The distribution of recombination intermediates across the 12kb region beyond Chi is altered in xonA, recJ and recQ mutants suggesting that, in the RecBCD pathway of DSB repair, exonuclease I stimulates the formation of repair forks and that RecJQ promotes strand-invasion at a distance from the recombination initiation sites.


Asunto(s)
Reparación del ADN/genética , ADN Cruciforme/genética , Escherichia coli/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN/fisiología , Replicación del ADN , ADN Bacteriano/genética , ADN Cruciforme/metabolismo , Proteínas de Escherichia coli/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
6.
J Infect Dis ; 224(9): 1489-1499, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34282461

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. METHODS: We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. RESULTS: One year after symptoms, we estimate that 36% (95% range, 11%-94%) of anti-Spike immunoglobulin G (IgG) remains, 31% (95% range, 9%-89%) anti-RBD IgG remains, and 7% (1%-31%) of anti-nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0-3 months, 3-6 months, and 6-12 months. This method was validated using data from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. CONCLUSIONS: In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection, which can be used to reconstruct past epidemics.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Pruebas Serológicas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Formación de Anticuerpos , Especificidad de Anticuerpos , COVID-19/epidemiología , Femenino , Francia/epidemiología , Humanos , Inmunoglobulina G/sangre , Cinética , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Adulto Joven
7.
STAR Protoc ; 2(2): 100512, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34027477

RESUMEN

Chromosome conformation capture (Hi-C) has become a routine method for probing the 3D organization of genomes. However, when applied to bacteria and archaea, current protocols are expensive and limited in their resolution. By dissecting the different steps of published eukaryotic and prokaryotic Hi-C protocols, we have developed a cost- and time-effective approach to generate high-resolution (down to 500 bp - 1 kb) contact matrices of both bacteria and archaea genomes. For complete details on the use and execution of this protocol, please refer to Cockram et al. (2020).


Asunto(s)
Archaea/genética , Bacterias/genética , Mapeo Cromosómico , Cromosomas de Archaea/genética , Cromosomas Bacterianos/genética , Genoma Arqueal , Genoma Bacteriano
8.
Lancet Microbe ; 2(2): e60-e69, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33521709

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces an antibody response targeting multiple antigens that changes over time. This study aims to take advantage of this complexity to develop more accurate serological diagnostics. METHODS: A multiplex serological assay was developed to measure IgG and IgM antibody responses to seven SARS-CoV-2 spike or nucleoprotein antigens, two antigens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three non-coronavirus antigens. Antibodies were measured in serum samples collected up to 39 days after symptom onset from 215 adults in four French hospitals (53 patients and 162 health-care workers) with quantitative RT-PCR-confirmed SARS-CoV-2 infection, and negative control serum samples collected from healthy adult blood donors before the start of the SARS-CoV-2 epidemic (335 samples from France, Thailand, and Peru). Machine learning classifiers were trained with the multiplex data to classify individuals with previous SARS-CoV-2 infection, with the best classification performance displayed by a random forests algorithm. A Bayesian mathematical model of antibody kinetics informed by prior information from other coronaviruses was used to estimate time-varying antibody responses and assess the sensitivity and classification performance of serological diagnostics during the first year following symptom onset. A statistical estimator is presented that can provide estimates of seroprevalence in very low-transmission settings. FINDINGS: IgG antibody responses to trimeric spike protein (Stri) identified individuals with previous SARS-CoV-2 infection with 91·6% (95% CI 87·5-94·5) sensitivity and 99·1% (97·4-99·7) specificity. Using a serological signature of IgG and IgM to multiple antigens, it was possible to identify infected individuals with 98·8% (96·5-99·6) sensitivity and 99·3% (97·6-99·8) specificity. Informed by existing data from other coronaviruses, we estimate that 1 year after infection, a monoplex assay with optimal anti-Stri IgG cutoff has 88·7% (95% credible interval 63·4-97·4) sensitivity and that a four-antigen multiplex assay can increase sensitivity to 96·4% (80·9-100·0). When applied to population-level serological surveys, statistical analysis of multiplex data allows estimation of seroprevalence levels less than 2%, below the false-positivity rate of many other assays. INTERPRETATION: Serological signatures based on antibody responses to multiple antigens can provide accurate and robust serological classification of individuals with previous SARS-CoV-2 infection. This provides potential solutions to two pressing challenges for SARS-CoV-2 serological surveillance: classifying individuals who were infected more than 6 months ago and measuring seroprevalence in serological surveys in very low-transmission settings. FUNDING: European Research Council. Fondation pour la Recherche Médicale. Institut Pasteur Task Force COVID-19.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Antivirales , Teorema de Bayes , COVID-19/diagnóstico , Humanos , Inmunoglobulina G , Inmunoglobulina M , Aprendizaje Automático , SARS-CoV-2 , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
9.
Mol Cell ; 81(3): 459-472.e10, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33382984

RESUMEN

Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes.


Asunto(s)
Compartimento Celular , Cromatina/genética , Cromosomas de Archaea , ADN de Archaea/genética , Euryarchaeota/genética , Genoma Arqueal , Transcripción Genética , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica Arqueal , Halobacterium salinarum/genética , Haloferax volcanii/genética , Motivos de Nucleótidos , Filogenia , Thermococcus/genética
10.
Nucleic Acids Res ; 48(21): 12102-12115, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33301041

RESUMEN

In bacteria, DNA methylation can be facilitated by 'orphan' DNA methyltransferases lacking cognate restriction endonucleases, but whether and how these enzymes control key cellular processes are poorly understood. The effects of a specific modification, 4-methylcytosine (4mC), are even less clear, as this epigenetic marker is unique to bacteria and archaea, whereas the bulk of epigenetic research is currently performed on eukaryotes. Here, we characterize a 4mC methyltransferase from the understudied pathogen Leptospira spp. Inactivating this enzyme resulted in complete abrogation of CTAG motif methylation, leading to genome-wide dysregulation of gene expression. Mutants exhibited growth defects, decreased adhesion to host cells, higher susceptibility to LPS-targeting antibiotics, and, importantly, were no longer virulent in an acute infection model. Further investigation resulted in the discovery of at least one gene, that of an ECF sigma factor, whose transcription was altered in the methylase mutant and, subsequently, by mutation of the CTAG motifs in the promoter of the gene. The genes that comprise the regulon of this sigma factor were, accordingly, dysregulated in the methylase mutant and in a strain overexpressing the sigma factor. Our results highlight the importance of 4mC in Leptospira physiology, and suggest the same of other understudied species.


Asunto(s)
Proteínas Bacterianas/genética , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Bacteriano/metabolismo , Epigénesis Genética , Genoma Bacteriano , Leptospira interrogans/genética , Animales , Proteínas Bacterianas/metabolismo , Citosina/análogos & derivados , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Metilación de ADN , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Leptospira interrogans/metabolismo , Leptospira interrogans/patogenicidad , Leptospirosis/microbiología , Leptospirosis/mortalidad , Leptospirosis/patología , Mesocricetus , Regiones Promotoras Genéticas , Factor sigma/genética , Factor sigma/metabolismo , Análisis de Supervivencia , Transcripción Genética , Virulencia
11.
Nat Commun ; 8: 14618, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262707

RESUMEN

Aberrant DNA replication is a major source of the mutations and chromosomal rearrangements associated with pathological disorders. In bacteria, several different DNA lesions are repaired by homologous recombination, a process that involves sister chromatid pairing. Previous work in Escherichia coli has demonstrated that sister chromatid interactions (SCIs) mediated by topological links termed precatenanes, are controlled by topoisomerase IV. In the present work, we demonstrate that during the repair of mitomycin C-induced lesions, topological links are rapidly substituted by an SOS-induced sister chromatid cohesion process involving the RecN protein. The loss of SCIs and viability defects observed in the absence of RecN were compensated by alterations in topoisomerase IV, suggesting that the main role of RecN during DNA repair is to promote contacts between sister chromatids. RecN also modulates whole chromosome organization and RecA dynamics suggesting that SCIs significantly contribute to the repair of DNA double-strand breaks (DSBs).


Asunto(s)
Cromátides/metabolismo , Daño del ADN/fisiología , ADN Bacteriano/metabolismo , Escherichia coli/fisiología , Intercambio de Cromátides Hermanas/fisiología , Proteínas Bacterianas/fisiología , Segregación Cromosómica/fisiología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Replicación del ADN/fisiología , Enzimas de Restricción del ADN/fisiología , Topoisomerasa de ADN IV/fisiología , ADN Bacteriano/efectos de los fármacos , Mitomicina/farmacología , Rec A Recombinasas/fisiología , Respuesta SOS en Genética/efectos de los fármacos , Respuesta SOS en Genética/fisiología
12.
PLoS Genet ; 12(2): e1005799, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26872352

RESUMEN

Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Bacteriano/biosíntesis , Proteínas de Escherichia coli/metabolismo , Inmunoprecipitación de Cromatina , Cromosomas Bacterianos/metabolismo , Replicación del ADN , Proteínas de Escherichia coli/genética , Modelos Biológicos , Mutación/genética , Recombinación Genética
13.
Proc Natl Acad Sci U S A ; 112(34): E4735-42, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261330

RESUMEN

Understanding molecular mechanisms in the context of living cells requires the development of new methods of in vivo biochemical analysis to complement established in vitro biochemistry. A critically important molecular mechanism is genetic recombination, required for the beneficial reassortment of genetic information and for DNA double-strand break repair (DSBR). Central to recombination is the RecA (Rad51) protein that assembles into a spiral filament on DNA and mediates genetic exchange. Here we have developed a method that combines chromatin immunoprecipitation with next-generation sequencing (ChIP-Seq) and mathematical modeling to quantify RecA protein binding during the active repair of a single DSB in the chromosome of Escherichia coli. We have used quantitative genomic analysis to infer the key in vivo molecular parameters governing RecA loading by the helicase/nuclease RecBCD at recombination hot-spots, known as Chi. Our genomic analysis has also revealed that DSBR at the lacZ locus causes a second RecBCD-mediated DSBR event to occur in the terminus region of the chromosome, over 1 Mb away.


Asunto(s)
Daño del ADN , Reparación del ADN , Exodesoxirribonucleasa V/metabolismo , Genoma , Rec A Recombinasas/metabolismo , Inmunoprecipitación de Cromatina , Rec A Recombinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...