Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1440667, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176090

RESUMEN

Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.


Asunto(s)
Células Presentadoras de Antígenos , Antígenos Virales , Linfocitos B , Vesículas Extracelulares , Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Virus de la Fiebre Aftosa/inmunología , Vesículas Extracelulares/inmunología , Linfocitos B/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos Virales/inmunología , Vacunas Virales/inmunología , Proteínas Virales/inmunología , Activación de Linfocitos/inmunología , Células Dendríticas/inmunología , Presentación de Antígeno/inmunología
2.
Vaccine ; 37(12): 1565-1576, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30777349

RESUMEN

Exosomes are 60-150 nm small extracellular vesicles (EVs) released by most cells. Tumor-cell-derived exosomes, used as a vaccine, elicit a specific cytotoxic response against tumor cells, usually with a greater immunogenicity than tumor-cell lysates. However, the number of exosomes isolated from culture cells is limited. In recent studies, it was observed that cells respond to different stressor stimuli such as cytotoxic drugs, hypoxia, acidosis, or radiation by increasing the release of EVs. In this study, using the murine LBC T-cell lymphoma, we found that cyclophosphamide significantly increased EVs yield. These EVs express exosome marker proteins such as TSG-101, CD9, CD81, and CD63. Furthermore, similar humoral and cellular immune responses were induced in vivo by EVs isolated from LBC-tumor cells whether they were grown under normal culture conditions (EVs C) or in the presence of cyclophosphamide (EVs CTX). Mice vaccinated either with EVs C or EVs CTX were similarly protected against an intraperitoneal challenge with LBC tumor cells. CD4+ and CD8+ IFN-γ secreting cells were induced in immunized mice and a specific cytotoxic cellular immune response was elicited in vitro. These results demonstrate that a Th1 response was induced by immunization with the EVs. Our findings suggest that treatment of tumor cells with cyclophosphamide is a useful method to enhance the secretion of EVs in sensitive cell lines without altering their antitumor properties and thus may be used to produce antigens for future design of cancer vaccines.


Asunto(s)
Ciclofosfamida/farmacología , Exosomas/inmunología , Exosomas/metabolismo , Inmunidad/efectos de los fármacos , Linfoma de Células T/inmunología , Linfoma de Células T/metabolismo , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Pruebas Inmunológicas de Citotoxicidad , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Femenino , Linfoma de Células T/patología , Linfoma de Células T/terapia , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Front Immunol ; 8: 286, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28360912

RESUMEN

Extracellular vesicles (EVs), including endosome-derived nanovesicles (exosomes), are involved in cell-cell communication. Through transfer of their molecular contents, extracellular nanovesicles can alter the function of recipient cells. Due to these characteristics, EVs have shown potential as a new alternative for cancer immunotherapy. Tumor exosomes isolated from malignant ascites can activate dendritic cells, thereby priming the immune system to recognize and kill cancer cells. However, a suppressive role on tumor immune response has also been reported, suggesting that the neoplastic stage of carcinogenesis and the microenvironment where tumor cells grow may influence the amount of EVs released by the cell. This neoplastic stage and microenvironment may also impact EVs' components such as proteins and miRNA, determining their biological behavior. Most T-cell lymphomas have an aggressive clinical course and poor prognosis. Consequently, complementary alternative therapies are needed to improve the survival rates achieved with conventional treatments. In this work, we have characterized EVs isolated from ascites of mice bearing a very aggressive murine T-cell lymphoma and have studied their immunogenic properties. Small EVs were isolated by differential centrifugation, ultrafiltration, and ultracentrifugation at 100,000 × g on a sucrose cushion. The EVs were defined as exosomes by their morphology and size analyzed by electron microscopy, their floating density on a sucrose gradient, as well as their expression of endosome marker proteins ALIX, TSG-101; the tetraspanins CD63, CD9, and CD81. In addition, they contain tumor antigens, the marker for malignancy CD24, the heat shock protein HSP-70, and an unusual surface expression of HSP-90 was demonstrated. The administration of EVs isolated from ascites (EVs A) into naïve-syngeneic mice induced both humoral and cellular immune responses that allowed the rejection of subsequent tumor challenges. However, the immunization had no effect on a non-related mammary adenocarcinoma, demonstrating that the immune response elicited was specific and also it induced immune memory. In vitro analysis demonstrated that T-cells from EVs A-immunized mice secrete IFN-γ in response to tumor stimulation. Furthermore, tumor-specific CD4+ and CD8+ IFN-γ secreting cells could be efficiently expanded from mice immunized with EVs A, showing that a T helper 1 response is involved in tumor rejection. Our findings confirm exosomes as promising defined acellular tumor antigens for the development of an antitumor vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA