Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 108: 309-327, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535610

RESUMEN

Numerous studies have emphasised the importance of the gut microbiota during early life and its role in modulating neurodevelopment and behaviour. Epidemiological studies have shown that early-life antibiotic exposure can increase an individual's risk of developing immune and metabolic diseases. Moreover, preclinical studies have shown that long-term antibiotic-induced microbial disruption in early life can have enduring effects on physiology, brain function and behaviour. However, these studies have not investigated the impact of targeted antibiotic-induced microbiota depletion during critical developmental windows and how this may be related to neurodevelopmental outcomes. Here, we addressed this gap by administering a broad-spectrum oral antibiotic cocktail (ampicillin, gentamicin, vancomycin, and imipenem) to mice during one of three putative critical windows: the postnatal (PN; P2-9), pre-weaning (PreWean; P12-18), or post-weaning (Wean; P21-27) developmental periods and assessed the effects on physiology and behaviour in later life. Our results demonstrate that targeted microbiota disruption during early life has enduring effects into adolescence on the structure and function of the caecal microbiome, especially for antibiotic exposure during the weaning period. Further, we show that microbial disruption in early life selectively alters circulating immune cells and modifies neurophysiology in adolescence, including altered myelin-related gene expression in the prefrontal cortex and altered microglial morphology in the basolateral amygdala. We also observed sex and time-dependent effects of microbiota depletion on anxiety-related behavioural outcomes in adolescence and adulthood. Antibiotic-induced microbial disruption had limited and subtle effects on social behaviour and did not have any significant effects on depressive-like behaviour, short-term working, or recognition memory. Overall, this study highlights the importance of the gut microbiota during critical windows of development and the subtle but long-term effects that microbiota-targeted perturbations can have on brain physiology and behaviour.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Conducta Social , Microbioma Gastrointestinal/fisiología , Ansiedad
2.
Mol Psychiatry ; 27(12): 4928-4938, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36104438

RESUMEN

Stress-related psychiatric disorders such as depression are among the leading causes of morbidity and mortality. Considering that many individuals fail to respond to currently available antidepressant drugs, there is a need for antidepressants with novel mechanisms. Polymorphisms in the gene encoding FK506-binding protein 51 (FKBP51), a co-chaperone of the glucocorticoid receptor, have been linked to susceptibility to stress-related psychiatric disorders. Whether this protein can be targeted for their treatment remains largely unexplored. The aim of this work was to investigate whether inhibition of FKBP51 with SAFit2, a novel selective inhibitor, promotes hippocampal neuron outgrowth and neurogenesis in vitro and stress resilience in vivo in a mouse model of chronic psychosocial stress. Primary hippocampal neuronal cultures or hippocampal neural progenitor cells (NPCs) were treated with SAFit2 and neuronal differentiation and cell proliferation were analyzed. Male C57BL/6 mice were administered SAFit2 while concurrently undergoing a chronic stress paradigm comprising of intermittent social defeat and overcrowding, and anxiety and depressive -related behaviors were evaluated. SAFit2 increased neurite outgrowth and number of branch points to a greater extent than brain derived neurotrophic factor (BDNF) in primary hippocampal neuronal cultures. SAFit2 increased hippocampal NPC neurogenesis and increased neurite complexity and length of these differentiated neurons. In vivo, chronic SAFit2 administration prevented stress-induced social avoidance, decreased anxiety in the novelty-induced hypophagia test, and prevented stress-induced anxiety in the open field but did not alter adult hippocampal neurogenesis in stressed animals. These data warrant further exploration of inhibition of FKBP51 as a strategy to treat stress-related disorders.


Asunto(s)
Hipocampo , Resiliencia Psicológica , Estrés Psicológico , Proteínas de Unión a Tacrolimus , Animales , Masculino , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Resiliencia Psicológica/efectos de los fármacos , Estrés Psicológico/metabolismo , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Proteínas de Unión a Tacrolimus/metabolismo
3.
Mol Psychiatry ; 26(7): 3240-3252, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32709996

RESUMEN

Hippocampal neurogenesis has been shown to play roles in learning, memory, and stress responses. These diverse roles may be related to a functional segregation of the hippocampus along its longitudinal axis. Indeed, the dorsal hippocampus (dHi) plays a predominant role in spatial learning and memory, while the ventral hippocampus (vHi) is predominantly involved in the regulation of anxiety, a behaviour impacted by stress. Recent studies suggest that the area between them, the intermediate hippocampus (iHi) may also be functionally independent. In parallel, it has been reported that chronic stress reduces neurogenesis preferentially in the vHi rather the dHi. We thus aimed to determine whether such stress-induced changes in neurogenesis could be related to differential intrinsic sensitivity of neural progenitor cells (NPCs) from the dHi, iHi, or vHi to the stress hormone, corticosterone, or the glucocorticoid receptor (GR) agonist, dexamethasone. Long-term exposure of rat NPCs to corticosterone or dexamethasone decreased neuronal differentiation in the vHi but not the dHi, while iHi cultures showed an intermediate response. A similar gradient-like response on neuronal differentiation and maturation was observed with dexamethasone treatment. This gradient-like effect was also observed on GR nuclear translocation in response to corticosterone or dexamethasone. Long-term exposure to corticosterone or dexamethasone treatment also tended to induce a greater downregulation of GR-associated genes in vHi-derived neurons compared to those from the dHi and iHi. These data suggest that increased intrinsic sensitivity of vHi NPC-derived neurons to chronic glucocorticoid exposure may underlie the increased vulnerability of the vHi to chronic stress-induced reductions in neurogenesis.


Asunto(s)
Glucocorticoides , Hipocampo , Animales , Corticosterona , Glucocorticoides/farmacología , Hipocampo/metabolismo , Neurogénesis , Neuronas/metabolismo , Ratas , Receptores de Glucocorticoides/metabolismo
4.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460832

RESUMEN

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Asunto(s)
Bacterias/metabolismo , Encefalopatías/microbiología , Encéfalo/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Factores de Edad , Envejecimiento , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Conducta , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Encefalopatías/psicología , Disbiosis , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/microbiología , Sistema Nervioso Entérico/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Intestinos/inmunología , Neuroinmunomodulación , Plasticidad Neuronal , Factores de Riesgo
5.
Ann Nutr Metab ; 74 Suppl 2: 16-27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31234188

RESUMEN

Pregnancy and early life are characterized by marked changes in body microbial composition. Intriguingly, these changes take place simultaneously with neurodevelopmental plasticity, suggesting a complex dialogue between the microbes that inhabit the gastrointestinal tract and the brain. The purpose of this chapter is to describe the natural trajectory of microbiota during pregnancy and early life, as well as review the literature available on its interaction with neurodevelopment. Several lines of evidence show that the gut microbiota interacts with diet, drugs and stress both prenatally and postnatally. Clinical and preclinical studies are illuminating how these disruptions result in different developmental outcomes. Understanding the role of the microbiota in neurodevelopment may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Dieta , Recién Nacido , Madres , Femenino , Microbioma Gastrointestinal , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante , Embarazo , Atención Prenatal , Fenómenos Fisiologicos de la Nutrición Prenatal
6.
Biol Psychiatry ; 85(2): 150-163, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30064690

RESUMEN

It has been nearly 30 years since Dr. David Barker first highlighted the importance of prenatal factors in contributing to the developmental origins of adult disease. This concept was later broadened to include postnatal events. It is clear that the interaction between genetic predisposition and early life environmental exposures is key in this regard. However, recent research has also identified another important factor in the microbiota-the trillions of microorganisms that inhabit key body niches, including the vagina and gastrointestinal tract. Because the composition of these maternal microbiome sites has been linked to maternal metabolism and is also vertically transmitted to offspring, changes in the maternal microbiota are poised to significantly affect the newborn. In fact, several lines of evidence show that the gut microbiota interacts with diet, drugs, and stress both prenatally and postnatally and that these exogenous factors could also affect the dynamic changes in the microbiota composition occurring during pregnancy. Animal models have shown great utility in illuminating how these disruptions result in behavioral and brain morphological phenotypes reminiscent of psychiatric disorders (anxiety, depression, schizophrenia, and autism spectrum disorders). Increasing evidence points to critical interactions among the microbiota, host genetics, and both the prenatal and postnatal environments to temporally program susceptibility to psychiatric disorders later in life. Sex-specific phenotypes may be programmed through the influence of the microbiota on the hypothalamic-pituitary-adrenal axis and neuroimmune system.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Trastornos Mentales/microbiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...