Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4919, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418502

RESUMEN

Flat hydrodynamic shells likely represent an evolutionary trade-off between adaptation to an aquatic lifestyle and the instability of more rounded shells, thought beneficial for self-righting. Trade-offs often result in compromises, this is particularly true when freshwater turtles, with flatter shells, must self-right to avoid the negative effects of inverting. These turtles, theoretically, invest more biomechanical effort to achieve successful and timely self-righting when compared to turtles with rounded carapaces. This increase in effort places these hatchlings in a precarious position; prone to inversion and predation and with shells seemingly maladapted to the act of self-righting. Here, we examine hatchling self-righting performance in three morphologically distinct freshwater turtle species (Apalone spinifera, Chelydra serpentina and Trachemys scripta scripta) that inhabit similar environmental niches. We demonstrate that these hatchlings were capable of rapid self-righting and used considerably less biomechanical effort relative to adult turtles. Despite differences in shell morphology the energetic efficiency of self-righting remained remarkably low and uniform between the three species. Our results confound theoretical predictions of self-righting ability based on shell shape metrics and indicate that other morphological characteristics like neck or tail morphology and shell material properties must be considered to better understand the biomechanical nuances of Testudine self-righting.


Asunto(s)
Tortugas , Animales , Tortugas/anatomía & histología , Evolución Biológica , Exoesqueleto/anatomía & histología , Agua Dulce , Hidrodinámica
2.
J Exp Biol ; 225(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36196639

RESUMEN

Contraction of atrial smooth muscle in the hearts of semi-aquatic emydid turtles regulates ventricular filling, and it has been proposed that it could regulate stroke volume during characteristic rapid transitions in cardiac output associated with diving. For this hypothesis to be supported, atrial smooth muscle should be widely distributed in diving Testudines. To further understand the putative function and evolutionary significance of endocardial smooth muscle in Testudines, we studied the hearts of loggerhead sea turtles, Caretta caretta (n=7), using immunohistochemistry and histology. Surprisingly, we found no evidence of prominent atrial smooth muscle in C. caretta. However, smooth muscle was readily identified in the sinus venosus. Our results suggest that atrial smooth muscle does not contribute to the diving capabilities of C. caretta, indicating that the possible roles of smooth muscle in emydid turtle hearts require a re-evaluation. In sea turtles, the sinus venosus may instead contribute to regulate cardiac filling.


Asunto(s)
Buceo , Tortugas , Animales , Tortugas/fisiología , Músculo Liso , Gasto Cardíaco , Atrios Cardíacos
3.
Sci Adv ; 8(33): eabn8351, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35977013

RESUMEN

Any change in the energetic cost of mammalian mastication will affect the net energy gain from foods. Although the energetic efficiency of masticatory effort is fundamental in understanding the evolution of the human masticatory system, nothing is known currently about the associated metabolic costs of chewing different items. Here, using respirometry and electromyography of the masseter muscle, we demonstrate that chewing by human subjects represents a measurable energy sink. Chewing a tasteless odorless gum elevates metabolic rate by 10 to 15% above basal levels. Energy expenditure increases with gum stiffness and is paid for by greater muscle recruitment. For modern humans, it is likely that mastication represents a small part of the daily energy budget. However, for our ancestors, before the onset of cooking and sophisticated food processing methods, the costs must have been relatively high, adding a previously unexplored energetic dimension to the interpretation of hominin dentofacial fossils.

4.
Sci Rep ; 12(1): 431, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013453

RESUMEN

Armoured, rigid bodied animals, such as Testudines, must self-right should they find themselves in an inverted position. The ability to self-right is an essential biomechanical and physiological process that influences survival and ultimately fitness. Traits that enhance righting ability may consequently offer an evolutionary advantage. However, the energetic requirements of self-righting are unknown. Using respirometry and kinematic video analysis, we examined the metabolic cost of self-righting in the terrestrial Mediterranean spur-thighed tortoise and compared this to the metabolic cost of locomotion at a moderate, easily sustainable speed. We found that self-righting is, relatively, metabolically expensive and costs around two times the mass-specific power required to walk. Rapid movements of the limbs and head facilitate successful righting however, combined with the constraints of breathing whilst upside down, contribute a significant metabolic cost. Consequently, in the wild, these animals should favour environments or behaviours where the risk of becoming inverted is reduced.


Asunto(s)
Tortugas/fisiología , Animales , Fenómenos Biomecánicos , Metabolismo Energético , Femenino , Consumo de Oxígeno
5.
J Anat ; 239(6): 1273-1286, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34302302

RESUMEN

Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross-sectional area [PCSA]) and investigate their scaling in juvenile Alligator mississippiensis spanning an order of magnitude in body mass (359 g-5.5 kg). Comparatively, the expiratory muscles (transversus abdominis, rectus abdominis, iliocostalis), which compress the trunk, have greater relative PCSA being specialised for greater force-generating capacity, while the inspiratory muscles (diaphragmaticus, truncocaudalis ischiotruncus, ischiopubis), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessory diaphragmaticus scaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. The iliocostalis, an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force-generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of the diaphragmaticus and compliance of the body wall in the lumbar region against which it works may contribute to low-cost breathing in crocodilians.


Asunto(s)
Caimanes y Cocodrilos , Abdomen , Animales , Locomoción , Músculo Esquelético/anatomía & histología , Respiración
6.
Proc Biol Sci ; 288(1946): 20210213, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653130

RESUMEN

Testudines are susceptible to inversion and self-righting using their necks, limbs or both, to generate enough mechanical force to flip over. We investigated how shell morphology, neck length and self-righting biomechanics scale with body mass during ontogeny in Chelydra serpentina, which uses neck-powered self-righting. We found that younger turtles flipped over twice as fast as older individuals. A simple geometric model predicted the relationships of shell shape and self-righting time with body mass. Conversely, neck force, power output and kinetic energy increase with body mass at rates greater than predicted. These findings were correlated with relatively longer necks in younger turtles than would be predicted by geometric similarity. Therefore, younger turtles self-right with lower biomechanical costs than predicted by simple scaling theory. Considering younger turtles are more prone to inverting and their shells offer less protection, faster and less costly self-righting would be advantageous in overcoming the detriments of inversion.


Asunto(s)
Tortugas , Animales , Fenómenos Biomecánicos , Extremidades , Tortugas/anatomía & histología
7.
Artículo en Inglés | MEDLINE | ID: mdl-32446940

RESUMEN

Chelonians are mechanically unusual vertebrates as an exoskeleton limits their body wall mobility. They generally move slowly on land and have aquatic or semi-aquatic lifestyles. Somewhat surprisingly, the limited experimental work that has been done suggests that their energetic cost of transport (CoT) are relatively low. This study examines the mechanical evidence for CoT in three turtle species that have differing degrees of terrestrial activity. Our results show that Apolone travels faster than the other two species, and that Chelydra has higher levels of yaw. All the species show poor mean levels of energy recovery, and, whilst there is considerable variation, never show the high levels of energy recovery seen in cursorial quadrupeds. The mean mechanical CoT is 2 to 4 times higher than is generally seen in terrestrial animals. We therefore find no mechanical support for a low CoT in these species. This study illustrates the need for research on a wider range of chelonians to discover whether there are indeed general trends in mechanical and metabolic energy costs.


Asunto(s)
Marcha/fisiología , Tortugas/fisiología , Animales , Fenómenos Biomecánicos , Metabolismo Energético , Locomoción , Especificidad de la Especie , Simpatría , Factores de Tiempo
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1793): 20190140, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31928195

RESUMEN

The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstructions of fossils. This improved understanding of respiratory form and function should help to reconstruct key physiological parameters in fossil taxa. We highlight key events in archosaur evolution where respiratory physiology likely played a major role, such as their radiation at a time of relative hypoxia following the Permo-Triassic mass extinction, and their evolution of elevated metabolic rates. This article is part of the theme issue 'Vertebrate palaeophysiology'.


Asunto(s)
Evolución Biológica , Reptiles/fisiología , Respiración , Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Animales , Aves/anatomía & histología , Aves/fisiología , Fósiles/anatomía & histología , Reptiles/anatomía & histología
9.
Sci Rep ; 9(1): 11451, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391515

RESUMEN

Research into the terrestrial locomotion of birds is often based upon laboratory treadmill experiments. However, it is unclear how transposable these results are for birds moving in the wild. Here, using video recordings, we compared the kinematics of locomotion (stride frequency, stride length, stance phase, swing phase, duty factor) and speed range of Svalbard rock ptarmigan (Lagopus muta hyperborea) under field and laboratory treadmill conditions. Our findings indicate that the kinematics of walking and aerial running are conserved when moving on the treadmill and in the field. Differences, however, were found when grounded running under the two conditions, linked to substrate. Substrate effects were confirmed by analysing trials only moving over very hard snow. In line with laboratory treadmill energetic predictions, wild ptarmigan have a preferred speed during walking and to a lesser extent when aerial running but not when moving with a grounded running gait. The birds were also capable of a higher top speed in the field than that observed during treadmill studies. Our findings demonstrate that laboratory treadmill research provides meaningful information relevant to wild birds while highlighting the importance of understanding the substrate the animals are moving over.


Asunto(s)
Animales Salvajes/fisiología , Galliformes/fisiología , Carrera/fisiología , Caminata/fisiología , Animales , Fenómenos Biomecánicos , Prueba de Esfuerzo/instrumentación , Prueba de Esfuerzo/métodos , Masculino , Modelos Animales , Svalbard , Grabación en Video
10.
Biol Lett ; 15(7): 20190354, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31266420

RESUMEN

The muscles that effect lung ventilation are key to understanding the evolutionary constraints on animal form and function. Here, through electromyography, we demonstrate a newly discovered respiratory function for the iliocostalis muscle in the American alligator ( Alligator mississippiensis). The iliocostalis is active during expiration when breathing on land at 28°C and this activity is mediated through the uncinate processes on the vertebral ribs. There was also an increase in muscle activity during the forced expirations of alarm distress vocalizations. Interestingly, we did not find any respiratory activity in the iliocostalis when the alligators were breathing with their body submerged in water at 18°C, which resulted in a reduced breathing frequency. The iliocostalis is an accessory breathing muscle that alligators are able to recruit in to assist expiration under certain conditions.


Asunto(s)
Caimanes y Cocodrilos , Animales , Electromiografía , Respiración , Músculos Respiratorios
11.
J Therm Biol ; 79: 8-14, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30612689

RESUMEN

Broiler chickens are selected to undergo a rapid six-week hatch-to-slaughter growth phase to attain large body and muscle mass. Broilers have relatively high resting and locomotor metabolic costs suggesting that adaptive thermoregulatory mechanisms are required to dissipate excess heat. Using thermal imaging in the growing broiler we characterised the trajectory of radiative and convective cooling in still air across broiler development. Scaling of head, tarsus and toe surface area did not deviate from body mass2/3 while torso area increased with positive allometry, body mass0.82, reflecting increased feather coverage and/or disproportionate abdominal/thoracic growth. Despite relatively increased area, the body became less effective for heat transfer presumably due to increasing feather coverage. Conversely, the magnitude of heat exchange from the distal hindlimbs was improved in larger birds. Overall capacity to transfer heat by convection and radiation in still air was attenuated over development, since the proportion of resting metabolic rate accounted for decreased in standing and sitting postures. This physiological constraint could be ameliorated by increased latent heat transfer or provision of environmental ventilation, which we modelled according to industrial guidelines. Based on models, higher airspeeds coincided with improved convective cooling that assisted in maintaining the proportion of RMR accounted for by convective and radiative heat transfer. These data highlight the potentially adverse thermoregulatory effects of rapid growth rate and body mass increases, which may contribute to the increased sedentary resting and decreased locomotor behaviour observed in large broilers.


Asunto(s)
Regulación de la Temperatura Corporal , Pollos/fisiología , Animales , Pollos/crecimiento & desarrollo , Convección , Conductividad Térmica , Termografía
12.
Sci Rep ; 8(1): 4562, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540782

RESUMEN

Broiler chickens are increasingly at the forefront of global meat production but the consequences of fast growth and selection for an increase in body mass on bird health are an ongoing concern for industry and consumers. To better understand the implications of selection we evaluated energetics and behaviour over the 6-week hatch-to-slaughter developmental period in a commercial broiler. The effect of posture on resting metabolic rate becomes increasingly significant as broilers grow, as standing became more energetically expensive than sitting. The proportion of overall metabolic rate accounted for by locomotor behaviour decreased over development, corresponding to declining activity levels, mean and peak walking speeds. These data are consistent with the inference that broilers allocate energy to activity within a constrained metabolic budget and that there is a reducing metabolic scope for exercise throughout their development. Comparison with similarly sized galliforms reveals that locomotion is relatively energetically expensive in broilers.


Asunto(s)
Pollos/fisiología , Locomoción/fisiología , Crianza de Animales Domésticos , Animales , Metabolismo Basal , Índice de Masa Corporal , Pollos/crecimiento & desarrollo , Condicionamiento Físico Animal , Enfermedades de las Aves de Corral
13.
Sci Rep ; 6: 36512, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805067

RESUMEN

Exaggerated traits, like the peacock train, are recognized as classic examples of sexual selection. The evolution of sexual traits is often considered paradoxical as, although they enhance reproductive success, they are widely presumed to hinder movement and survival. Many exaggerated traits represent an additional mechanical load that must be carried by the animal and therefore may influence the metabolic cost of locomotion and constrain locomotor performance. Here we conducted respirometry experiments on peacocks and demonstrate that the exaggerated sexually selected train does not compromise locomotor performance in terms of the metabolic cost of locomotion and its kinematics. Indeed, peacocks with trains had a lower absolute and mass specific metabolic cost of locomotion. Our findings suggest that adaptations that mitigate any costs associated with exaggerated morphology are central in the evolution of sexually selected traits.


Asunto(s)
Adaptación Fisiológica , Galliformes/fisiología , Locomoción/fisiología , Animales , Femenino , Galliformes/anatomía & histología , Masculino
14.
J Exp Biol ; 219(Pt 16): 2525-33, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27296046

RESUMEN

The differing limb dynamics and postures of small and large terrestrial animals may be mechanisms for minimising metabolic costs under scale-dependent muscle force, work and power demands; however, empirical evidence for this is lacking. Leghorn chickens (Gallus gallus domesticus) are highly dimorphic: males have greater body mass and relative muscle mass than females, which are permanently gravid and have greater relative intestinal mass. Furthermore, leghorns are selected for standard (large) and bantam (small) varieties and the former are sexually dimorphic in posture, with females having a more upright limb. Here, high-speed videography and morphological measurements were used to examine the walking gaits of leghorn chickens of the two varieties and sexes. Hindlimb skeletal elements were geometrically similar among the bird groups, yet the bird groups did not move with dynamic similarity. In agreement with the interspecific scaling of relative duty factor (DF, the proportion of a stride period with ground contact for any given foot) with body mass, bantams walked with greater DF than standards, and females walked with greater DF than males. Greater DF in females than in males was achieved via variety-specific kinematic mechanisms, associated with the presence/absence of postural dimorphism. Females may require greater DF in order to reduce peak muscle forces and minimise power demands associated with lower muscle to reproductive tissue mass ratios and smaller body size. Furthermore, a more upright posture observed in the standard, but not bantam, females, may relate to minimising the work demands of being larger and having proportionally larger reproductive tissue volume. Lower DF in males relative to females may also be a work-minimising strategy and/or due to greater limb inertia (as a result of greater pelvic limb muscle mass) prolonging the swing phase.


Asunto(s)
Tamaño Corporal , Pollos/anatomía & histología , Pollos/fisiología , Caracteres Sexuales , Caminata/fisiología , Animales , Fenómenos Biomecánicos , Cruzamiento , Femenino , Marcha/fisiología , Modelos Lineales , Masculino
15.
J Anat ; 228(6): 952-64, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969917

RESUMEN

Leghorn (layer) chickens (Gallus gallus domesticus) differ in locomotor morphology and performance due to artificial selection for standard (large) and bantam (small) varieties, sexual dimorphisms and ontogenetic stage. Here, the hind limb skeletal muscle architectural properties of mature and juvenile standard breeds and mature bantams are compared and linked to measures of locomotor performance. Mature males possessed greater relative muscle physiological cross-sectional areas (PCSAs) than their conspecific females, indicative of greater force-generating capacity, and in line with their greater maximum sustainable speeds compared with females. Furthermore, some of the relative fascicle lengths of the pennate muscles were greater in mature males than in mature females, which may permit greater muscle contractibility. Immature standard leghorns, however, did not share the same dimorphisms as their mature forms. The differences in architectural properties between immature and mature standard males indicate that with the onset of male sexual maturity, concomitant with increasing muscle mass in males, the relative fascicle lengths of pennate muscles and the relative PCSAs of the parallel-fibred muscles also increase. The age-related differences in standard breed male muscle architecture are linked to the presence and absence of sex differences in maximum aerobic speeds. Males of bantam and standard varieties shared similar muscle proportions (% body mass), but exhibited intrinsic muscle differences with a tendency for greater force-generating capabilities in bantams and greater contractile capabilities in standards. The metabolic costs associated with the longer fascicle lengths, together with more crouched limbs in standard than in bantam males may explain the lack of allometry in the minimum metabolic cost of transport between these birds of different size.


Asunto(s)
Pollos/anatomía & histología , Locomoción , Músculo Esquelético/anatomía & histología , Caracteres Sexuales , Factores de Edad , Animales , Pollos/fisiología , Femenino , Masculino , Músculo Esquelético/fisiología
16.
Biol Open ; 4(10): 1306-15, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26405047

RESUMEN

In leghorn chickens (Gallus gallus domesticus) of standard breed (large) and bantam (small) varieties, artificial selection has led to females being permanently gravid and sexual selection has led to male-biased size dimorphism. Using respirometry, videography and morphological measurements, sex and variety differences in metabolic cost of locomotion, gait utilisation and maximum sustainable speed (Umax) were investigated during treadmill locomotion. Males were capable of greater Umax than females and used a grounded running gait at high speeds, which was only observed in a few bantam females and no standard breed females. Body mass accounted for variation in the incremental increase in metabolic power with speed between the varieties, but not the sexes. For the first time in an avian species, a greater mass-specific incremental cost of locomotion, and minimum measured cost of transport (CoTmin) were found in males than in females. Furthermore, in both varieties, the female CoTmin was lower than predicted from interspecific allometry. Even when compared at equivalent speeds (using Froude number), CoT decreased more rapidly in females than in males. These trends were common to both varieties despite a more upright limb in females than in males in the standard breed, and a lack of dimorphism in posture in the bantam variety. Females may possess compensatory adaptations for metabolic efficiency during gravidity (e.g. in muscle specialization/posture/kinematics). Furthermore, the elevated power at faster speeds in males may be linked to their muscle properties being suited to inter-male aggressive combat.

17.
J Exp Biol ; 218(Pt 7): 1028-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25657211

RESUMEN

The minimum metabolic cost of transport (CoTmin; J kg(-1) m(-1)) scales negatively with increasing body mass (∝Mb (-1/3)) across species from a wide range of taxa associated with marked differences in body plan. At the intraspecific level, or between closely related species, however, CoTmin does not always scale with Mb. Similarity in physiology, dynamics of movement, skeletal geometry and posture between closely related individuals is thought to be responsible for this phenomenon, despite the fact that energetic, kinematic and morphometric data are rarely collected together. We examined the relationship between these integrated components of locomotion in leghorn chickens (Gallus gallus domesticus) selectively bred for large and bantam (miniature) varieties. Interspecific allometry predicts a CoTmin ∼16% greater in bantams compared with the larger variety. However, despite 38% and 23% differences in Mb and leg length, respectively, the two varieties shared an identical walking CoTmin, independent of speed and equal to the allometric prediction derived from interspecific data for the larger variety. Furthermore, the two varieties moved with dynamic similarity and shared geometrically similar appendicular and axial skeletons. Hip height, however, did not scale geometrically and the smaller variety had more erect limbs, contrary to interspecific scaling trends. The lower than predicted CoTmin in bantams for their Mb was associated with both the more erect posture and a lower cost per stride (J kg(-1) stride(-1)). Therefore, our findings are consistent with the notion that a more erect limb is associated with a lower CoTmin and with the previous assumption that similarity in skeletal shape, inherently linked to walking dynamics, is associated with similarity in CoTmin.


Asunto(s)
Pollos/anatomía & histología , Pollos/fisiología , Extremidad Inferior/anatomía & histología , Extremidad Inferior/fisiología , Animales , Fenómenos Biomecánicos , Tamaño Corporal/fisiología , Huesos/anatomía & histología , Metabolismo Energético , Locomoción/fisiología , Postura , Caminata/fisiología
18.
J Therm Biol ; 44: 126-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25086983

RESUMEN

The material properties and morphologies of the modified integumentary organs of birds (the keratinous bills, claws and feathers) have evolved to withstand the variety of mechanical stresses imposed by their interaction with the environment. These stresses are likely to vary temporally in seasonal environments and may also differ between the sexes as a result of behavioural dimorphism. Here we investigate the morphology and material properties of the claws of male and female Svalbard ptarmigan (Lagopus muta hyperborea) during the summer and winter using nanoindentation. Despite differences in locomotor demands between the sexes and pronounced seasonal differences in environmental conditions, like ground substrate, ambient temperature and day length, there was no significant difference in Young׳s modulus or hardness between the seasons for each sex. However, when comparing males and females, female claws were significantly harder than those of males and both sexes had significantly wider claws during winter. We propose that wider claws may follow winter claw moulting as the claws are regrown and form an important part of the ptarmigan׳s snowshoe-like foot that is an adaptation to locomotion on snow. Future work focusing on growth rates and more broad measures of material properties in both captive and wild birds is required to determine the extent of seasonal and sex differences in the material properties of their keratinous structures.


Asunto(s)
Aclimatación , Galliformes/fisiología , Queratinas/metabolismo , Estaciones del Año , Animales , Femenino , Galliformes/anatomía & histología , Galliformes/metabolismo , Pezuñas y Garras/anatomía & histología , Pezuñas y Garras/metabolismo , Masculino , Factores Sexuales
19.
PeerJ ; 2: e432, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071981

RESUMEN

Genetic selection for improved meat yields, digestive efficiency and growth rates have transformed the biology of broiler chickens. Modern birds undergo a 50-fold multiplication in body mass in just six weeks, from hatching to slaughter weight. However, this selection for rapid growth and improvements in broiler productivity is also widely thought to be associated with increased welfare problems as many birds suffer from leg, circulatory and respiratory diseases. To understand growth-related changes in musculoskeletal and organ morphology and respiratory skeletal development over the standard six-week rearing period, we present data from post-hatch cadaveric commercial broiler chickens aged 0, 2, 4 and 6 weeks. The heart, lungs and intestines decreased in size for hatch to slaughter weight when considered as a proportion of body mass. Proportional liver size increased in the two weeks after hatch but decreased between 2 and 6 weeks. Breast muscle mass on the other hand displayed strong positive allometry, increasing in mass faster than the increase in body mass. Contrastingly, less rapid isometric growth was found in the external oblique muscle, a major respiratory muscle that moves the sternum dorsally during expiration. Considered together with the relatively slow ossification of elements of the respiratory skeleton, it seems that rapid growth of the breast muscles might compromise the efficacy of the respiratory apparatus. Furthermore, the relative reduction in size of the major organs indicates that selective breeding in meat-producing birds has unintended consequences that may bias these birds toward compromised welfare and could limit further improvements in meat-production and feed efficiency.

20.
PeerJ ; 2: e473, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071996

RESUMEN

In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...