Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928062

RESUMEN

Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.


Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Trastornos del Humor , Trastornos por Estrés Postraumático , Animales , Astrocitos/metabolismo , Humanos , Trastornos por Estrés Postraumático/terapia , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/psicología , Trastornos del Humor/etiología , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Estrés Psicológico , Roedores
2.
Complex Psychiatry ; 9(1-4): 57-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101541

RESUMEN

Introduction: Chronic stress-related illnesses such as major depressive disorder and post-traumatic stress disorder share symptomatology, including anxiety, anhedonia, and helplessness. Across disorders, neurotoxic dysregulated glutamate (Glu) signaling may underlie symptom emergence. Current first-line antidepressant drugs, which do not directly target Glu signaling, fail to provide adequate benefit for many patients and are associated with high relapse rates. Riluzole modulates glutamatergic neurotransmission by increasing metabolic cycling and modulating signal transduction. Clinical studies exploring riluzole's efficacy in stress-related disorders have provided varied results. However, the utility of riluzole for treating specific symptom dimensions or as a prophylactic treatment has not been comprehensively assessed. Methods: We investigated whether chronic prophylactic riluzole (∼12-15 mg/kg/day p.o.) could prevent the emergence of behavioral deficits induced by unpredictable chronic mild stress (UCMS) in mice. We assessed (i) anxiety-like behavior using the elevated-plus maze, open-field test, and novelty-suppressed feeding, (ii) mixed anxiety/anhedonia-like behavior in the novelty-induced hypophagia test, and (iii) anhedonia-like behavior using the sucrose consumption test. Z-scoring summarized changes across tests measuring similar dimensions. In a separate learned helplessness (LH) cohort, we investigated whether chronic prophylactic riluzole treatment could block the development of helplessness-like behavior. Results: UCMS induced an elevation in anhedonia-like behavior and overall behavioral emotionality that was blocked by prophylactic riluzole. In the LH cohort, prophylactic riluzole blocked the development of helplessness-like behavior. Discussion/Conclusion: This study supports the utility of riluzole as a prophylactic medication for preventing anhedonia and helplessness symptoms associated with stress-related disorders.

3.
Cereb Cortex ; 32(15): 3137-3158, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34864929

RESUMEN

Acetylcholine (ACh) neurotransmission within the medial prefrontal cortex (mPFC) plays an important modulatory role to support mPFC-dependent cognitive functions. This role is mediated by ACh activation of its nicotinic (nAChR) and muscarinic (mAChR) classes of receptors, which are both present on mPFC layer VI pyramidal neurons. While the expression and function of nAChRs have been characterized thoroughly for rodent mPFC layer VI neurons during postnatal development, mAChRs have not been characterized in detail. We employed whole-cell electrophysiology with biocytin filling to demonstrate that mAChR function is greater during the juvenile period of development than in adulthood for both sexes. Pharmacological experiments suggest that each of the M1, M2, and M3 mAChR subtypes contributes to ACh responses in these neurons in a sex-dependent manner. Analysis of dendrite morphology identified effects of age more often in males, as the amount of dendrite matter was greatest during the juvenile period. Interestingly, a number of positive correlations were identified between the magnitude of ACh/mAChR responses and dendrite morphology in juvenile mice that were not present in adulthood. To our knowledge, this work describes the first detailed characterization of mAChR function and its correlation with neuron morphology within layer VI of the mPFC.


Asunto(s)
Neuronas , Receptores Muscarínicos , Acetilcolina/metabolismo , Animales , Colinérgicos/farmacología , Femenino , Masculino , Ratones , Neuronas/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Receptores Muscarínicos/metabolismo
4.
Int J Neuropsychopharmacol ; 24(10): 842-853, 2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34346493

RESUMEN

BACKGROUND: Neuromorphological changes are consistently reported in the prefrontal cortex of patients with stress-related disorders and in rodent stress models, but the effects of stress on astrocyte morphology and the potential link to behavioral deficits are relatively unknown. METHODS: To answer these questions, transgenic mice expressing green fluorescent protein (GFP) under the glial fibrillary acid protein (GFAP) promotor were subjected to 7, 21, or 35 days of chronic restraint stress (CRS). CRS-induced behavioral effects on anhedonia- and anxiety-like behaviors were measured using the sucrose intake and the PhenoTyper tests, respectively. Prefrontal cortex GFP+ or GFAP+ cell morphology was assessed using Sholl analysis, and associations with behavior were determined using correlation analysis. RESULTS: CRS-exposed male and female mice displayed anxiety-like behavior at 7, 21, and 35 days and anhedonia-like behavior at 35 days. Analysis of GFAP+ cell morphology revealed significant atrophy of distal processes following 21 and 35 days of CRS. CRS induced similar decreases in intersections at distal radii for GFP+ cells accompanied by increased proximal processes. In males, the number of intersections at the most distal radius step significantly correlated with anhedonia-like behavior (r = 0.622, P < .05) for GFP+ cells and with behavioral emotionality calculated by z-scoring all behavioral measured deficits (r = -0.667, P < .05). Similar but not significant correlations were observed in females. No correlation between GFP+ cell atrophy with anxiety-like behavior was found. CONCLUSION: Chronic stress exposure induces a progressive atrophy of cortical astroglial cells, potentially contributing to maladaptive neuroplastic and behavioral changes associated with stress-related disorders.


Asunto(s)
Astrocitos/metabolismo , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Animales , Ansiedad/metabolismo , Depresión/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Restricción Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...