Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 28: 221-229, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33364058

RESUMEN

INTRODUCTION: Obtaining a certain bone volume is an important goal in implantology or orthopedics. Thus, after tooth extraction, quite a lot of horizontal and vertical alveolar bone is lost in time and can be detrimental to the implant treatment outcome, while the treatment of critical bone defects is a considerable challenge for surgery. OBJECTIVES: In this study we designed a new in vivo model as an useful experimental tool to assess guided bone regeneration (GBR) using a computer-aided design/manufacturing (CAD-CAM) space-maintaining barrier. METHODS: The barrier was 3D printed with three progressive heights, surgically placed on rat femur, and GBR results were analyzed at 2, 4, and 8 weeks by X-ray and bone mineral density analysis, histology/morphometry and by immunofluorescence and immunohistochemistry for osteogenesis and angiogenesis evaluation. RESULTS: The obtained results show that the proposed experimental model provides a real-time useful information on progressive bone tissue formation, which depends on the volume of isolated space created for GBR and on molecular events that lead to satisfactory vertical and horizontal bone augmentation and osteointegration. CONCLUSION: In conclusion, the proposed customized three-dome space-maintaining barrier is suitable as an experimental tool to assess the potential of using the designed barriers in dentistry and orthopedics to promote the formation of new bone and determine their space- and time-dependent limitations. Meanwhile, guided bone augmentation for dentistry requires subsequent evaluation on an alveolar bone preclinical model followed by clinical implementation.

2.
Materials (Basel) ; 13(6)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245214

RESUMEN

Bone regeneration is a claim challenge in addressing bone defects with large tissue deficits, that involves bone grafts to support the activity. In vitro biocompatibility of the bacterial cellulose-modified polyhydroxyalkanoates (PHB/BC) scaffolds and its osteogenic potential in critical-size mouse calvaria defects had been investigated. Bone promotion and mineralization were analyzed by biochemistry, histology/histomorphometry, X-ray analysis and immunofluorescence for highlighting osteogenesis markers. In summary, our results showed that PHB/BC scaffolds are able to support 3T3-L1 preadipocytes proliferation and had a positive effect on in vivo osteoblast differentiation, consequently inducing new bone formation after 20 weeks post-implantation. Thus, the newly developed PHB/BC scaffolds could turn out to be suitable biomaterials for the bone tissue engineering purpose.

3.
Sci Rep ; 7(1): 16641, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192253

RESUMEN

Limited self-regenerating capacity of human skeleton makes the reconstruction of critical size bone defect a significant challenge for clinical practice. Aimed for regenerating bone tissues, this study was designed to investigate osteogenic differentiation, along with bone repair capacity of 3D chitosan (CHT) scaffolds enriched with graphene oxide (GO) in critical-sized mouse calvarial defect. Histopathological/histomorphometry and scanning electron microscopy(SEM) analysis of the implants revealed larger amount of new bone in the CHT/GO-filled defects compared with CHT alone (p < 0.001). When combined with GO, CHT scaffolds synergistically promoted the increase of alkaline phosphatase activity both in vitro and in vivo experiments. This enhanced osteogenesis was corroborated with increased expression of bone morphogenetic protein (BMP) and Runx-2 up to week 4 post-implantation, which showed that GO facilitates the differentiation of osteoprogenitor cells. Meanwhile, osteogenesis was promoted by GO at the late stage as well, as indicated by the up-regulation of osteopontin and osteocalcin at week 8 and overexpressed at week 18, for both markers. Our data suggest that CHT/GO biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.


Asunto(s)
Regeneración Ósea , Quitosano , Grafito , Óxidos , Impresión Tridimensional , Andamios del Tejido , Fosfatasa Alcalina/metabolismo , Animales , Biomarcadores , Biopsia , Quitosano/química , Modelos Animales de Enfermedad , Grafito/química , Inmunohistoquímica , Ratones , Osteogénesis , Óxidos/química , Cráneo/lesiones , Cráneo/metabolismo , Cráneo/ultraestructura , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA