Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Vision (Basel) ; 8(1)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38535763

RESUMEN

The tremendous increase in the use of video-based eye tracking has made it possible to collect eye tracking data from thousands of participants. The traditional procedures for the manual detection and classification of saccades and for trial categorization (e.g., correct vs. incorrect) are not viable for the large datasets being collected. Additionally, video-based eye trackers allow for the analysis of pupil responses and blink behaviors. Here, we present a detailed description of our pipeline for collecting, storing, and cleaning data, as well as for organizing participant codes, which are fairly lab-specific but nonetheless, are important precursory steps in establishing standardized pipelines. More importantly, we also include descriptions of the automated detection and classification of saccades, blinks, "blincades" (blinks occurring during saccades), and boomerang saccades (two nearly simultaneous saccades in opposite directions where speed-based algorithms fail to split them), This is almost entirely task-agnostic and can be used on a wide variety of data. We additionally describe novel findings regarding post-saccadic oscillations and provide a method to achieve more accurate estimates for saccade end points. Lastly, we describe the automated behavior classification for the interleaved pro/anti-saccade task (IPAST), a task that probes voluntary and inhibitory control. This pipeline was evaluated using data collected from 592 human participants between 5 and 93 years of age, making it robust enough to handle large clinical patient datasets. In summary, this pipeline has been optimized to consistently handle large datasets obtained from diverse study cohorts (i.e., developmental, aging, clinical) and collected across multiple laboratory sites.

2.
eNeuro ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331578

RESUMEN

Spontaneous eye blinking is gaining popularity as a proxy for higher cognitive functions, as it is readily modulated by both environmental demands and internal processes. Prior studies were impoverished in sample size, sex representation and age distribution, making it difficult to establish a complete picture of the behavior. Here we present eye-tracking data from a large cohort of normative participants (n=604, 393 F, aged 5-93 years) performing two tasks: one with structured, discrete trials (interleaved pro/anti-saccade task; IPAST) and one with a less structured, continuous organization in which participants watch movies (free-viewing; FV). Sex- and age-based analyses revealed that females had higher blink rates between the ages of 22 and 58 years in the IPAST, and 22 and 34 years in FV. We derived a continuous measure of blink probability to reveal behavioral changes driven by stimulus appearance in both paradigms. In the IPAST, blinks were suppressed near stimulus appearance, particularly on correct anti-saccade trials, which we attribute to the stronger inhibitory control required for anti-saccades compared to pro-saccades. In FV, blink suppression occurred immediately after scene changes, and the effect was sustained on scenes where gaze clustered among participants (indicating engagement of attention). Females were more likely than males to blink during appearance of novel stimuli in both tasks, but only within the age bin of 18-44 years. The consistency of blink patterns in each paradigm endorses blinking as a sensitive index for changes in visual processing and attention, while sex and age differences drive interindividual variability.Significance Statement Eye-tracking is becoming useful as a non-invasive tool for detecting preclinical markers of neurological and psychiatric disease. Blinks are understudied despite being an important supplement to saccade and pupil eye-tracking metrics. The present study is a crucial step in developing a healthy baseline for blink behavior to compare to clinical groups. While many prior blink studies suffered from small sample sizes with relatively low age- and sex-diversity (review by Jongkees & Colzato, 2016), our large cohort of healthy participants has permitted a more detailed analysis of sex and age effects in blink behavior. Furthermore, our analysis techniques are robust to temporal changes in blink probability, greatly clarifying the relationship between blinking, visual processing, and inhibitory control mechanisms on visual tasks.

3.
Mult Scler Relat Disord ; 79: 104969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660456

RESUMEN

INTRODUCTION: Impairment in visual and cognitive functions occur in youth with demyelinating disorders such as multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein antibody-associated disease. Quantitative behavioral assessment using eye-tracking and pupillometry can provide functional metrics for important prognostic and clinically relevant information at the bedside. METHODS: Children and adolescents diagnosed with demyelinating disorders and healthy, age-matched controls completed an interleaved pro- and anti-saccade task using video-based eye-tracking and underwent spectral-domain optical coherence tomography examination for evaluation of retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Low-contrast visual acuity and Symbol Digit Modalities Test were performed for visual and cognitive functional assessments. We assessed saccade and pupil parameters including saccade reaction time, direction error rate, pupil response latency, peak constriction time, and peak constriction and dilation velocities. Generalized Estimating Equations were used to examine the association of eye-tracking parameters with optic neuritis history, structural metrics, and visual and cognitive scores. RESULTS: The study included 36 demyelinating disorders patients, aged 8-18 yrs. (75% F; median = 15.22 yrs., SD = 2.8) and 34 age-matched controls (65% F; median = 15.26 yrs., SD = 2.3). Surprisingly, pro- and anti-saccade performance was comparable between patients and controls, whereas pupil control was altered in patients. Oculomotor latency measures were strongly associated with the number of optic neuritis episodes, including saccade reaction time, pupil response latency, and peak constriction time. Peak constriction time was associated with both retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Pupil response latency and peak constriction time were associated with visual acuity. Pupil velocity for both constriction and dilation was associated with Symbol Digit Modalities Test scores. CONCLUSION: The strong associations between oculomotor measures with history of optic neuritis, structural, visual, and cognitive assessments in these cohorts demonstrates that quantitative eye-tracking can be useful for probing demyelinating injury of the brain and optic nerve. Future studies should evaluate their utility in discriminating between demyelinating disorders and tracking disease progression.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Neuritis Óptica , Niño , Humanos , Adolescente , Neuritis Óptica/complicaciones , Neuritis Óptica/diagnóstico por imagen , Nervio Óptico , Neuromielitis Óptica/diagnóstico , Retina , Fibras Nerviosas , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Coherencia Óptica
4.
Front Neurosci ; 17: 1179765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425020

RESUMEN

Shifting motor actions from reflexively reacting to an environmental stimulus to predicting it allows for smooth synchronization of behavior with the outside world. This shift relies on the identification of patterns within the stimulus - knowing when a stimulus is predictable and when it is not - and launching motor actions accordingly. Failure to identify predictable stimuli results in movement delays whereas failure to recognize unpredictable stimuli results in early movements with incomplete information that can result in errors. Here we used a metronome task, combined with video-based eye-tracking, to quantify temporal predictive learning and performance to regularly paced visual targets at 5 different interstimulus intervals (ISIs). We compared these results to the random task where the timing of the target was randomized at each target step. We completed these tasks in female pediatric psychiatry patients (age range: 11-18 years) with borderline personality disorder (BPD) symptoms, with (n = 22) and without (n = 23) a comorbid attention-deficit hyperactivity disorder (ADHD) diagnosis, against controls (n = 35). Compared to controls, BPD and ADHD/BPD cohorts showed no differences in their predictive saccade performance to metronome targets, however, when targets were random ADHD/BPD participants made significantly more anticipatory saccades (i.e., guesses of target arrival). The ADHD/BPD group also significantly increased their blink rate and pupil size when initiating movements to predictable versus unpredictable targets, likely a reflection of increased neural effort for motor synchronization. BPD and ADHD/BPD groups showed increased sympathetic tone evidenced by larger pupil sizes than controls. Together, these results support normal temporal motor prediction in BPD with and without ADHD, reduced response inhibition in BPD with comorbid ADHD, and increased pupil sizes in BPD patients. Further these results emphasize the importance of controlling for comorbid ADHD when querying BPD pathology.

5.
Brain Commun ; 5(2): fcad049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970045

RESUMEN

Oculomotor tasks generate a potential wealth of behavioural biomarkers for neurodegenerative diseases. Overlap between oculomotor and disease-impaired circuitry reveals the location and severity of disease processes via saccade parameters measured from eye movement tasks such as prosaccade and antisaccade. Existing studies typically examine few saccade parameters in single diseases, using multiple separate neuropsychological test scores to relate oculomotor behaviour to cognition; however, this approach produces inconsistent, ungeneralizable results and fails to consider the cognitive heterogeneity of these diseases. Comprehensive cognitive assessment and direct inter-disease comparison are crucial to accurately reveal potential saccade biomarkers. We remediate these issues by characterizing 12 behavioural parameters, selected to robustly describe saccade behaviour, derived from an interleaved prosaccade and antisaccade task in a large cross-sectional data set comprising five disease cohorts (Alzheimer's disease/mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease, and cerebrovascular disease; n = 391, age 40-87) and healthy controls (n = 149, age 42-87). These participants additionally completed an extensive neuropsychological test battery. We further subdivided each cohort by diagnostic subgroup (for Alzheimer's disease/mild cognitive impairment and frontotemporal dementia) or degree of cognitive impairment based on neuropsychological testing (all other cohorts). We sought to understand links between oculomotor parameters, their relationships to robust cognitive measures, and their alterations in disease. We performed a factor analysis evaluating interrelationships among the 12 oculomotor parameters and examined correlations of the four resultant factors to five neuropsychology-based cognitive domain scores. We then compared behaviour between the abovementioned disease subgroups and controls at the individual parameter level. We theorized that each underlying factor measured the integrity of a distinct task-relevant brain process. Notably, Factor 3 (voluntary saccade generation) and Factor 1 (task disengagements) significantly correlated with attention/working memory and executive function scores. Factor 3 also correlated with memory and visuospatial function scores. Factor 2 (pre-emptive global inhibition) correlated only with attention/working memory scores, and Factor 4 (saccade metrics) correlated with no cognitive domain scores. Impairment on several mostly antisaccade-related individual parameters scaled with cognitive impairment across disease cohorts, while few subgroups differed from controls on prosaccade parameters. The interleaved prosaccade and antisaccade task detects cognitive impairment, and subsets of parameters likely index disparate underlying processes related to different cognitive domains. This suggests that the task represents a sensitive paradigm that can simultaneously evaluate a variety of clinically relevant cognitive constructs in neurodegenerative and cerebrovascular diseases and could be developed into a screening tool applicable to multiple diagnoses.

6.
Alzheimers Dement ; 19(1): 226-243, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36318754

RESUMEN

INTRODUCTION: Understanding synergies between neurodegenerative and cerebrovascular pathologies that modify dementia presentation represents an important knowledge gap. METHODS: This multi-site, longitudinal, observational cohort study recruited participants across prevalent neurodegenerative diseases and cerebrovascular disease and assessed participants comprehensively across modalities. We describe univariate and multivariate baseline features of the cohort and summarize recruitment, data collection, and curation processes. RESULTS: We enrolled 520 participants across five neurodegenerative and cerebrovascular diseases. Median age was 69 years, median Montreal Cognitive Assessment score was 25, median independence in activities of daily living was 100% for basic and 93% for instrumental activities. Spousal study partners predominated; participants were often male, White, and more educated. Milder disease stages predominated, yet cohorts reflect clinical presentation. DISCUSSION: Data will be shared with the global scientific community. Within-disease and disease-agnostic approaches are expected to identify markers of severity, progression, and therapy targets. Sampling characteristics also provide guidance for future study design.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Masculino , Anciano , Enfermedades Neurodegenerativas/epidemiología , Actividades Cotidianas , Ontario , Estudios de Cohortes , Estudios Longitudinales
7.
Eur J Neurosci ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36453013

RESUMEN

Decision-making during mixed-strategy games requires flexibly adapting choice strategies in response to others' actions and dynamically tracking outcomes. Such decisions involve diverse cognitive processes, including reinforcement learning, which are affected by disruptions to the striatal dopamine system. We therefore investigated how genetic variation in dopamine function affected mixed-strategy decision-making in Parkinson's disease (PD), which involves striatal dopamine pathology. Sixty-six PD patients (ages 49-85, Hoehn and Yahr Stages 1-3) and 22 healthy controls (ages 54-75) competed in a mixed-strategy game where successful performance depended on minimizing choice biases (i.e., flexibly adapting choices trial by trial). Participants also completed a fixed-strategy task that was matched for sensory input, motor outputs and overall reward rate. Factor analyses were used to disentangle cognitive from motor aspects within both tasks. Using a within-subject, multi-centre design, patients were examined on and off dopaminergic therapy, and genetic variation was examined via a multilocus genetic profile score representing the additive effects of three single nucleotide polymorphisms (SNPs) that influence dopamine transmission: rs4680 (COMT Val158 Met), rs6277 (C957T) and rs907094 (encoding DARPP-32). PD and control participants displayed comparable mixed-strategy choice behaviour (overall); however, PD patients with genetic profile scores indicating higher dopamine transmission showed improved performance relative to those with low scores. Exploratory follow-up tests across individual SNPs revealed better performance in individuals with the C957T polymorphism, reflecting higher striatal D2/D3 receptor density. Importantly, genetic variation modulated cognitive aspects of performance, above and beyond motor function, suggesting that genetic variation in dopamine signalling may underlie individual differences in cognitive function in PD.

8.
Front Aging Neurosci ; 14: 842549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663573

RESUMEN

The capacity for inhibitory control is an important cognitive process that undergoes dynamic changes over the course of the lifespan. Robust characterization of this trajectory, considering age continuously and using flexible modeling techniques, is critical to advance our understanding of the neural mechanisms that differ in healthy aging and neurological disease. The interleaved pro/anti-saccade task (IPAST), in which pro- and anti-saccade trials are randomly interleaved within a block, provides a simple and sensitive means of assessing the neural circuitry underlying inhibitory control. We utilized IPAST data collected from a large cross-sectional cohort of normative participants (n = 604, 5-93 years of age), standardized pre-processing protocols, generalized additive modeling, and change point analysis to investigate the effect of age on saccade behavior and identify significant periods of change throughout the lifespan. Maturation of IPAST measures occurred throughout adolescence, while subsequent decline began as early as the mid-20s and continued into old age. Considering pro-saccade correct responses and anti-saccade direction errors made at express (short) and regular (long) latencies was crucial in differentiating developmental and aging processes. We additionally characterized the effect of age on voluntary override time, a novel measure describing the time at which voluntary processes begin to overcome automated processes on anti-saccade trials. Drawing on converging animal neurophysiology, human neuroimaging, and computational modeling literature, we propose potential frontal-parietal and frontal-striatal mechanisms that may mediate the behavioral changes revealed in our analysis. We liken the models presented here to "cognitive growth curves" which have important implications for improved detection of neurological disease states that emerge during vulnerable windows of developing and aging.

9.
J Neurol ; 269(9): 4920-4938, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35501501

RESUMEN

OBJECTIVES: This study (1) describes and compares saccade and pupil abnormalities in patients with manifest alpha-synucleinopathies (αSYN: Parkinson's disease (PD), Multiple System Atrophy (MSA)) and a tauopathy (progressive supranuclear palsy (PSP)); (2) determines whether patients with rapid-eye-movement sleep behaviour disorder (RBD), a prodromal stage of αSYN, already have abnormal responses that may indicate a risk for developing PD or MSA. METHODS: Ninety (46 RBD, 27 PD, 17 MSA) patients with an αSYN, 10 PSP patients, and 132 healthy age-matched controls (CTRL) were examined with a 10-min video-based eye-tracking task (Free Viewing). Participants were free to look anywhere on the screen while saccade and pupil behaviours were measured. RESULTS: PD, MSA, and PSP spent more time fixating the centre of the screen than CTRL. All patient groups made fewer macro-saccades (> 2◦ amplitude) with smaller amplitude than CTRL. Saccade frequency was greater in RBD than in other patients. Following clip change, saccades were temporarily suppressed, then rebounded at a slower pace than CTRL in all patient groups. RBD had distinct, although discrete saccade abnormalities that were more marked in PD, MSA, and even more in PSP. The vertical saccade rate was reduced in all patients and decreased most in PSP. Clip changes produced large increases or decreases in screen luminance requiring pupil constriction or dilation, respectively. PSP elicited smaller pupil constriction/dilation responses than CTRL, while MSA elicited the opposite. CONCLUSION: RBD patients already have discrete but less pronounced saccade abnormalities than PD and MSA patients. Vertical gaze palsy and altered pupil control differentiate PSP from αSYN.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Parálisis Supranuclear Progresiva , Sinucleinopatías , Biomarcadores , Tecnología de Seguimiento Ocular , Humanos , Atrofia de Múltiples Sistemas/diagnóstico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Parálisis Supranuclear Progresiva/diagnóstico
10.
J Neurosci ; 42(1): 69-80, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34759032

RESUMEN

When presented with a periodic stimulus, humans spontaneously adjust their movements from reacting to predicting the timing of its arrival, but little is known about how this sensorimotor adaptation changes across development. To investigate this, we analyzed saccade behavior in 114 healthy humans (ages 6-24 years) performing the visual metronome task, who were instructed to move their eyes in time with a visual target that alternated between two known locations at a fixed rate, and we compared their behavior to performance in a random task, where target onsets were randomized across five interstimulus intervals (ISIs) and thus the timing of appearance was unknown. Saccades initiated before registration of the visual target, thus in anticipation of its appearance, were labeled predictive [saccade reaction time (SRT) < 90 ms] and saccades that were made in reaction to its appearance were labeled reactive (SRT > 90 ms). Eye-tracking behavior including saccadic metrics (e.g., peak velocity, amplitude), pupil size following saccade to target, and blink behavior all varied as a function of predicting or reacting to periodic targets. Compared with reactive saccades, predictive saccades had a lower peak velocity, a hypometric amplitude, smaller pupil size, and a reduced probability of blink occurrence before target appearance. The percentage of predictive and reactive saccades changed inversely from ages 8-16, at which they reached adult-levels of behavior. Differences in predictive saccades for fast and slow target rates are interpreted by differential maturation of cerebellar-thalamic-striatal pathways.SIGNIFICANCE STATEMENT From the first moments of life, humans are exposed to rhythm (i.e., mother's heartbeat in utero), but the timeline of brain development to promote the identification and anticipation of a rhythmic stimulus, known as temporal prediction, remains unknown. Here, we used saccade reaction time (SRT) in the visual metronome task to differentiate between temporally predictive and reactive responses to a target that alternated at a fixed rate in humans aged 6-24. Periods of age-related change varied little by target rate, with matured predictive performance evident by mid-adolescence for fast and slow rates. A strong correlation among saccade, pupil, and blink responses during target prediction provides evidence of oculomotor coordination and dampened noradrenergic neuronal activity when generating rhythmic motor responses.


Asunto(s)
Adaptación Fisiológica/fisiología , Parpadeo/fisiología , Tiempo de Reacción/fisiología , Movimientos Sacádicos/fisiología , Adolescente , Niño , Femenino , Humanos , Masculino , Estimulación Luminosa , Pupila , Adulto Joven
11.
Mov Disord ; 36(7): 1720-1726, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33754406

RESUMEN

BACKGROUND: Parkinson's disease (PD) patients exhibit deficits in saccade performance, pupil function, and blink rate. Isolated REM (rapid eye movement) Sleep Behavior Disorder (RBD) is a harbinger to PD making them candidates to investigate for early oculomotor abnormalities as PD biomarkers. OBJECTIVES: We tested whether saccade, pupillary, and blink responses in RBD were similar to PD. METHODS: RBD (n = 22), PD (n = 22) patients, and healthy controls (CTRL) (n = 74) were studied with video-based eye-tracking. RESULTS: RBD patients did not have significantly different saccadic behavior compared to CTRL, but PD patients differed from CTRL and RBD. Both patient groups had significantly lower blink rates, dampened pupil constriction, and dilation responses compared to CTRL. CONCLUSION: RBD and PD patients had altered pupil and blink behavior compared to CTRL. Because RBD saccade parameters were comparable to CTRL, pupil and blink brain areas may be impacted before saccadic control areas, making them potential prodromal PD biomarkers. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Encéfalo , Humanos , Enfermedad de Parkinson/complicaciones , Pupila , Movimientos Sacádicos
12.
Front Neurosci ; 15: 667399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35237117

RESUMEN

Impulsivity and emotional dysregulation are two core features of borderline personality disorder (BPD), and the neural mechanisms recruited during mixed-strategy interactions overlap with frontolimbic networks that have been implicated in BPD. We investigated strategic choice patterns during the classic two-player game, Matching Pennies, where the most efficient strategy is to choose each option randomly from trial-to-trial to avoid exploitation by one's opponent. Twenty-seven female adolescents with BPD (mean age: 16 years) and twenty-seven age-matched female controls (mean age: 16 years) participated in an experiment that explored the relationship between strategic choice behavior and impulsivity in both groups and emotional dysregulation in BPD. Relative to controls, BPD participants showed marginally fewer reinforcement learning biases, particularly decreased lose-shift biases, increased variability in reaction times (coefficient of variation; CV), and a greater percentage of anticipatory decisions. A subset of BPD participants with high levels of impulsivity showed higher overall reward rates, and greater modulation of reaction times by outcome, particularly following loss trials, relative to control and BPD participants with lower levels of impulsivity. Additionally, BPD participants with higher levels of emotional dysregulation showed marginally increased reward rate and increased entropy in choice patterns. Together, our preliminary results suggest that impulsivity and emotional dysregulation may contribute to variability in mixed-strategy decision-making in female adolescents with BPD.

13.
Hum Brain Mapp ; 41(7): 1934-1949, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31916374

RESUMEN

Our ability to control and inhibit automatic behaviors is crucial for negotiating complex environments, all of which require rapid communication between sensory, motor, and cognitive networks. Here, we measured neuromagnetic brain activity to investigate the neural timing of cortical areas needed for inhibitory control, while 14 healthy young adults performed an interleaved prosaccade (look at a peripheral visual stimulus) and antisaccade (look away from stimulus) task. Analysis of how neural activity relates to saccade reaction time (SRT) and occurrence of direction errors (look at stimulus on antisaccade trials) provides insight into inhibitory control. Neuromagnetic source activity was used to extract stimulus-aligned and saccade-aligned activity to examine temporal differences between prosaccade and antisaccade trials in brain regions associated with saccade control. For stimulus-aligned antisaccade trials, a longer SRT was associated with delayed onset of neural activity within the ipsilateral parietal eye field (PEF) and bilateral frontal eye field (FEF). Saccade-aligned activity demonstrated peak activation 10ms before saccade-onset within the contralateral PEF for prosaccade trials and within the bilateral FEF for antisaccade trials. In addition, failure to inhibit prosaccades on anti-saccade trials was associated with increased activity prior to saccade onset within the FEF contralateral to the peripheral stimulus. This work on dynamic activity adds to our knowledge that direction errors were due, at least in part, to a failure to inhibit automatic prosaccades. These findings provide novel evidence in humans regarding the temporal dynamics within oculomotor areas needed for saccade programming and the role frontal brain regions have on top-down inhibitory control.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Movimientos Sacádicos , Adulto , Mapeo Encefálico , Potenciales Evocados/fisiología , Movimientos Oculares/fisiología , Femenino , Lóbulo Frontal/fisiología , Lateralidad Funcional/fisiología , Humanos , Inhibición Psicológica , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Campos Visuales , Adulto Joven
14.
Brain Imaging Behav ; 14(6): 2450-2463, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31493141

RESUMEN

Children with ADHD show significant deficits in response inhibition. A leading hypothesis suggests prefrontal hypoactivation as a possible cause, though, there is conflicting evidence. We tested the hypoactivation hypothesis by analyzing the response inhibition process within the oculomotor system. Twenty-two children diagnosed with ADHD and twenty control (CTRL) children performed the antisaccade task while undergoing an fMRI study with concurrent eye tracking. This task included a preparatory stage that cued a prosaccade (toward a stimuli) or an antisaccade (away from a stimuli) without an actual presentation of a peripheral target. This allowed testing inhibitory control without the confounding activation from an actual response. The ADHD group showed longer reaction times and more antisaccade direction errors. While both groups showed activations in saccade network areas, the ADHD showed significant hyperactivation in the dorsolateral prefrontal cortex during the preparatory stage. No other areas in the saccade network had significant activation differences between groups. Further ADHD group analysis OFF and ON stimulant medication did not show drug-related activation differences. However, they showed a significant correlation between the difference in OFF/ON preparatory activation in the precuneus, and a decrease in the number of antisaccade errors. These results do not support the hypoactivity hypothesis as an inhibitory control deficit general explanation, but instead suggest less efficiency during the inhibitory period of the antisaccade task in children. Our findings contrast with previous results in ADHD adults showing decreased preparatory antisaccade activity, suggesting a significant age-dependent maturation effect associated to the inhibitory response in the oculomotor system.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Niño , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal , Tiempo de Reacción , Movimientos Sacádicos
15.
Eur J Neurosci ; 51(9): 1914-1927, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31596980

RESUMEN

During competitive interactions, such as predator-prey or team sports, the outcome of one's actions is dependent on both their own choices and those of their opponents. Success in these rivalries requires that individuals choose dynamically and unpredictably, often adopting a mixed strategy. Understanding the neural basis of strategic decision making is complicated by the fact that it recruits various cognitive processes that are often shared with non-strategic forms of decision making, such as value estimation, working memory, response inhibition, response selection, and reward processes. Although researchers have explored neural activity within key brain regions during mixed-strategy games, how brain activity differs in the context of strategic interactions versus non-strategic choices is not well understood. We developed a novel behavioral paradigm to dissociate choice behavior during mixed-strategy interactions from non-strategic choices, and we used task-based functional magnetic resonance imaging (fMRI) to contrast brain activation. In a block design, participants competed in the classic mixed-strategy game, "matching pennies," against a dynamic computer opponent designed to exploit predictability in players' response patterns. Results were contrasted with a non-strategic task that had comparable sensory input, motor output, and reward rate; thus, differences in behavior and brain activation reflect strategic processes. The mixed-strategy game was associated with activation of a distributed cortico-striatal network compared to the non-strategic task. We propose that choosing in mixed-strategy contexts requires additional cognitive demands present to a lesser degree during the control task, illustrating the strength of this design in probing function of cognitive systems beyond core sensory, motor, and reward processes.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Toma de Decisiones , Humanos , Recompensa
16.
Cortex ; 121: 89-103, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31550618

RESUMEN

The ability to anticipate events and execute motor commands prior to a sensory event is an essential capability for human's everyday life. This implicitly learned anticipatory behavior depends on the past performance of repeated sensorimotor interactions timed with external cues. This kind of predictive behavior has been shown to be compromised in neurological disorders such as Huntington disease (HD), in which neural atrophy includes key cortical and basal ganglia regions. To investigate the neural basis of the anticipatory behavioral deficits in HD we used a predictive-saccade paradigm that requires predictive control to generate saccades in a metronomic temporal pattern. This is ideal because the integrity of the oculomotor network that includes the striatum and prefrontal, parietal, occipital and temporal cortices can be analyzed using structural MRI. Our results showed that the HD patients had severe predictive saccade deficits (i.e., an inability to reduce saccade reaction time in predictive condition), which are accentuated in patients with more severe motor deterioration. Structural imaging analyses revealed that these anticipatory deficits correlated with grey-matter atrophy in frontal, parietal-occipital and striatal regions. These findings indicate that the predictive saccade control deficits in HD are related to an extended cortico-striatal atrophy. This suggests that eye movement measurement could be a reliable marker of the progression of cognitive deficits in HD.


Asunto(s)
Atrofia/patología , Trastornos del Conocimiento/patología , Enfermedad de Huntington/patología , Aprendizaje/fisiología , Adulto , Anciano , Atrofia/fisiopatología , Encéfalo/patología , Trastornos del Conocimiento/fisiopatología , Femenino , Sustancia Gris/patología , Humanos , Enfermedad de Huntington/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Tiempo de Reacción
17.
Front Syst Neurosci ; 13: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30814938

RESUMEN

The distributed nature of information processing in the brain creates a complex variety of decision making behavior. Likewise, computational models of saccadic decision making behavior are numerous and diverse. Here we present a generative model of saccadic action selection in the context of competitive decision making in the superior colliculus (SC) in order to investigate how independent neural signals may converge to interact and guide saccade selection, and to test if systematic variations can better replicate the variability in responses that are part of normal human behavior. The model was tasked with performing pro- and anti-saccades in order to replicate specific attributes of healthy human saccade behavior. Participants (ages 18-39) were instructed to either look toward (pro-saccade, well-practiced automated response) or away from (anti-saccade, combination of inhibitory and voluntary responses) a peripheral visual stimulus. They generated express and regular latency saccades in the pro-saccade task. In the anti-saccade task, correct reaction times were longer and participants occasionally looked at the stimulus (direction error) at either express or regular latencies. To gain a better understanding of the underlying neural processes that lead to saccadic action selection and response inhibition, we implemented 8 inputs inspired by systems neuroscience. These inputs reflected known sensory, automated, voluntary, and inhibitory components of cortical and basal ganglia activity that coalesces in the intermediate layers of the SC (SCi). The model produced bimodal reaction time distributions, where express and regular latency saccades had distinct modes, for both correct pro-saccades and direction errors in the anti-saccade task. Importantly, express and regular latency direction errors resulted from interactions of different inputs in the model. Express latency direction errors were due to a lack of pre-emptive fixation and inhibitory activity, which aloud sensory and automated inputs to initiate a stimulus-driven saccade. Regular latency errors occurred when the automated motor signals were stronger than the voluntary motor signals. While previous models have emulated fewer aspects of these behavioral findings, the focus of the simulations here is on the interaction of a wide variety of physiologically-based information integration producing a richer set of natural behavioral variability.

18.
Brain Cogn ; 124: 1-13, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29698907

RESUMEN

Despite distinct diagnostic criteria, attention-deficit hyperactivity disorder (ADHD) and bipolar disorder (BD) share cognitive and emotion processing deficits that complicate diagnoses. The goal of this study was to use an emotional saccade task to characterize executive functioning and emotion processing in adult ADHD and BD. Participants (21 control, 20 ADHD, 20 BD) performed an interleaved pro/antisaccade task (look toward vs. look away from a visual target, respectively) in which the sex of emotional face stimuli acted as the cue to perform either the pro- or antisaccade. Both patient groups made more direction (erroneous prosaccades on antisaccade trials) and anticipatory (saccades made before cue processing) errors than controls. Controls exhibited lower microsaccade rates preceding correct anti- vs. prosaccade initiation, but this task-related modulation was absent in both patient groups. Regarding emotion processing, the ADHD group performed worse than controls on neutral face trials, while the BD group performed worse than controls on trials presenting faces of all valence. These findings support the role of fronto-striatal circuitry in mediating response inhibition deficits in both ADHD and BD, and suggest that such deficits are exacerbated in BD during emotion processing, presumably via dysregulated limbic system circuitry involving the anterior cingulate and orbitofrontal cortex.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastorno Bipolar/psicología , Emociones , Función Ejecutiva , Expresión Facial , Movimientos Sacádicos , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/fisiopatología , Cuerpo Estriado/fisiopatología , Emociones/fisiología , Femenino , Giro del Cíngulo/fisiopatología , Humanos , Inhibición Psicológica , Sistema Límbico/fisiopatología , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Corteza Prefrontal/fisiopatología , Movimientos Sacádicos/fisiología , Adulto Joven
19.
J Pathol ; 245(1): 85-100, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29435980

RESUMEN

Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-ß oligomers (AßOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AßOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Liraglutida/farmacología , Memoria/efectos de los fármacos , Receptor de Insulina/efectos de los fármacos , Sinapsis/patología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipoglucemiantes/farmacología , Masculino , Ratones , Receptor de Insulina/metabolismo , Sinapsis/efectos de los fármacos
20.
Neuroimage ; 165: 92-101, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28988829

RESUMEN

Cognitive decline during aging includes impairments in frontal executive functions like reduced inhibitory control. However, decline is not uniform across the population, suggesting individual brain response variability to the aging process. Here we tested the hypothesis, within the oculomotor system, that older adults compensate for age-related neural alterations by changing neural activation levels of the oculomotor areas, or even by recruiting additional areas to assist with cognitive performance. We established that the observed changes had to be related to better cognitive performance to be considered as compensatory. To probe this hypothesis we used the antisaccade paradigm and analyzed the effect of aging on brain activations during the inhibition of prepotent responses to visual stimuli. While undergoing a fMRI scan with concurrent eye tracking, 25 young adults (21.7 y/o ± 1.9 SDM) and 25 cognitively normal older adults (66.2 y/o ± 9.8 SDM) performed an interleaved pro/antisaccade task consisting of a preparatory stage and an execution stage. Compared to young adults, older participants showed a larger increase in antisaccade reaction times, while also generating more antisaccade direction errors. BOLD signal analyses during the preparatory stage, when response inhibition processes are established to prevent an automatic response, showed decreased activations in the anterior cingulate and the supplementary eye fields in the older group. Moreover, older adults also showed additional recruitment of the frontal pole not seen in the younger group, and larger activations in the dorsolateral prefrontal cortex during antisaccade preparation. Additional analyses to address the performance variability in the older group showed distinct behavioral-BOLD signal correlations. Larger activations in the saccade network, including the frontal pole, positively correlated with faster antisaccade reaction times, suggesting a functional recruitment of this area. However, only the activation in the dorsolateral prefrontal cortex during the antisaccade events showed a negative correlation with the number of errors across older adults. These findings support the presence of two dissociable age-related plastic mechanisms that result in different behavioral outcomes. One related to the additional recruitment of neural resources within anterior pole to facilitate modulation of cognitive responses like faster antisaccade reaction times, and another related to increased activation of the dorsolateral prefrontal cortex resulting in a better inhibitory control in aging.


Asunto(s)
Envejecimiento/fisiología , Función Ejecutiva/fisiología , Corteza Prefrontal/fisiopatología , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Tiempo de Reacción/fisiología , Movimientos Sacádicos/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...