Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(22): 6807-6822, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073184

RESUMEN

The Brazilian Cerrado is one of the most biodiverse savannas in the world, yet 46% of its original cover has been cleared to make way for crops and pastures. These extensive land-use transitions (LUTs) are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperature (LST), and ultimately reducing precipitation. Here, we quantify the impacts of LUTs on ET and LST in the Cerrado by combining MODIS satellite data with annual land use and land cover maps from 2006 to 2019. We performed regression analyses to quantify the effects of six common LUTs on ET and LST across the entire gradient of Cerrado landscapes. Results indicate that clearing forests for cropland or pasture increased average LST by ~3.5°C and reduced mean annual ET by 44% and 39%, respectively. Transitions from woody savannas to cropland or pasture increased average LST by 1.9°C and reduced mean annual ET by 27% and 21%, respectively. Converting native grasslands to cropland or pasture increased average LST by 0.9 and 0.6°C, respectively. Conversely, grassland-to-pasture transitions increased mean annual ET by 15%. To date, land changes have caused a 10% reduction in water recycled to the atmosphere annually and a 0.9°C increase in average LST across the biome, compared to the historic baseline under native vegetation. Global climate changes from increased atmospheric greenhouse gas concentrations will only exacerbate these effects. Considering potential future scenarios, we found that abandoning deforestation control policies or allowing legal deforestation to continue (at least 28.4 Mha) would further reduce yearly ET (by -9% and -3%, respectively) and increase average LST (by +0.7 and +0.3°C, respectively) by 2050. In contrast, policies encouraging zero deforestation and restoration of the 5.2 Mha of illegally deforested areas would partially offset the warming and drying impacts of land-use change.


O Cerrado brasileiro é uma das savanas mais biodiversas do mundo. Apesar disso, 46% da sua cobertura original foi desmatada para dar lugar a cultivos agrícolas e pastos. Estas extensas transições de uso do solo (LUT) têm o potencial de influenciar o clima regional, reduzindo a evapotranspiração (ET), aumentando a temperatura da superfície terrestre (LST) e por fim reduzindo a precipitação. O objetivo deste estudo foi quantificar os impactos de LUTs sobre ET e LST no Cerrado, combinando dados do satélite MODIS com mapas anuais de uso e cobertura do solo de 2006-2019. Foram realizadas análises de regressão para quantificar os efeitos de seis LUTs usuais sobre ET e LST, ao longo de todo o gradiente de paisagens do Cerrado. Os resultados indicaram que a retirada de florestas para dar lugar à agricultura ou pastagem aumentou a LST média em ~3.5°C e reduziu a ET média anual em 44% e 39%, respectivamente. Transições de formações savânicas para agricultura ou pastagem aumentaram a LST média em 1.9°C e reduziram a ET média anual em 27% e 21%, respectivamente. A conversão de campos nativos para agricultura ou pastagem aumentou a LST média em 0.9 e 0.6°C, respectivamente. Em contrapartida, transições de formações campestres nativas para pastagens aumentaram a ET média anual em 15%. Até o momento, as mudanças de uso do solo causaram redução de 10% da água reciclada para a atmosfera anualmente e aumento de 0.9°C da LST média ao longo do bioma, em comparação com a linha de base histórica sob vegetação nativa. As mudanças climáticas globais decorrentes do aumento das concentrações atmosféricas de gases do efeito estufa irão exacerbar esses efeitos. Considerando potenciais cenários futuros, observou-se que o abandono das políticas de controle do desmatamento ou o avanço do desmatamento legal (ao menos 28.4 Mha) reduziriam a ET anual (em −9% e −3%, respectivamente) e aumentariam a LST média (em +0.7 e +0.3ºC, respectivamente) até 2050. Por outro lado, políticas que promovam desmatamento zero e restauração dos 5.2 Mha de áreas ilegalmente desmatadas compensariam parte dos impactos de aquecimento e seca causados por alterações de uso do solo.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Agricultura , Conservación de los Recursos Naturales , Bosques , Agua
3.
Biol Rev Camb Philos Soc ; 96(5): 2281-2303, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34056816

RESUMEN

Ethnobiology as a discipline has evolved increasingly to embrace theory-inspired and hypothesis-driven approaches to study why and how local people choose plants and animals they interact with and use for their livelihood. However, testing complex hypotheses or a network of ethnobiological hypotheses is challenging, particularly for data sets with non-independent observations due to species phylogenetic relatedness or socio-relational links between participants. Further, to account fully for the dynamics of local ecological knowledge, it is important to include the spatially explicit distribution of knowledge, changes in knowledge, and knowledge transmission and use. To promote the use of advanced statistical modelling approaches that address these limitations, we synthesize methodological advances for hypothesis-driven research in ethnobiology while highlighting the need for more figures than tables and more tables than text in ethnobiological literature. We present the ethnobiological motivations for conducting generalized linear mixed-effect modelling, structural equation modelling, phylogenetic generalized least squares, social network analysis, species distribution modelling, and predictive modelling. For each element of the proposed ethnobiologists quantitative toolbox, we present practical applications along with scripts for a widespread implementation. Because these statistical modelling approaches are rarely taught in most ethnobiological programs but are essential for careers in academia or industry, it is critical to promote workshops and short courses focused on these advanced methods. By embracing these quantitative modelling techniques without sacrificing qualitative approaches which provide essential context, ethnobiology will progress further towards an expansive interaction with other disciplines.


Asunto(s)
Modelos Estadísticos , Plantas , Humanos , Motivación , Filogenia
5.
Hortic Res ; 7(1): 177, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328430

RESUMEN

The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.

6.
J Ethnobiol Ethnomed ; 16(1): 70, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176822

RESUMEN

The cultural keystone species theory predicts plant species that are culturally important, play a role in resource acquisition, fulfil a psycho-socio-cultural function within a given culture, have high use-value, have an associated naming and terminology in a native language, and a high level of species irreplaceability qualify for cultural keystone species designation. This theory was proposed as a framework for understanding relationships between human societies and species that are integral to their culture. A greater understanding of the dynamic roles of cultural keystones in both ecosystem processes and cultural societies is a foundation for facilitating biocultural conservation. Given such important direct conservation implications of the cultural keystone species theory, we reviewed the use of this theoretical framework across the literature to identify new directions for research. Most studies often emphasized the role of cultural keystones species in human societies but failed to provide a robust and reproducible measure of cultural keystone species status or direct test of the predictions of the theory and underemphasized their potential roles in ecosystem processes. To date, no studies that mentioned cultural keystone species tested the predictions of the theory. Only 4.4% provided a measure for cultural keystone status and 47.4% have cited or applied keystone designation to a given species without providing a reproducible measure for cultural keystone species. Studies that provided a measure for cultural keystone species primarily occurred in North America while few of these studies occurred in Australia and Europe with none occurring in Africa. As such, most cultural keystone species have been designated as such qualitatively based on researcher subjectivity while other studies have designated keystone species with quantitative indices of cultural importance, often incorporating researcher biases or measuring a few of the cultural keystone status predictors rather than all of them, indicating a lack of consensus in identifying cultural keystone species. Thus, we pose the need for a paradigm shift toward the development of serious and systematic approaches for keystone designation.


Asunto(s)
Conservación de los Recursos Naturales , Cultura , Etnobotánica , Plantas/clasificación , Ecosistema , Humanos
7.
An Acad Bras Cienc ; 92(1): e20190282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32321025

RESUMEN

This work is focused on characterizing and understanding the aboveground biomass of Caatinga in a semiarid region in northeastern Brazil. The quantification of Caatinga biomass is limited by the small number of field plots, which are inadequate for addressing the biome's extreme heterogeneity. Satellite-derived biomass products can address spatial and temporal changes but they have not been validated for seasonally dry tropical forests. Here we combine a compilation of published field phytosociological observations with a new 30m spatial resolution satellite biomass product. Both data were significantly correlated, satellite estimates consistently captured the wide variability of the biomass across the different physiognomies (2-272 Mg/ha). Based on the satellite product we show that in year 2000 about 50 percent of the region had very low biomass (<2 Mg/ha) and that the majority of the biomass (86%) is concentrated in only 27% of the area. Our work confirm other estimates of biomass 39 Mg/ha (9-61 Mg/ha) and carbon 0.79 PgC. The satellite products together with ground based estimates has the potential to improve forest management in Caatinga and other seasonally dry tropical forests through improved approximation of spatial variability, how they relate to climate, and support numerical modeling experiments in semiarid regions.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales , Bosques , Brasil , Imágenes Satelitales , Estaciones del Año , Clima Tropical
8.
Glob Chang Biol ; 25(9): 2855-2868, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31237398

RESUMEN

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.


Asunto(s)
Dióxido de Carbono , Incendios , Brasil , Ecosistema , Bosques , Árboles
9.
Sci Total Environ ; 665: 1053-1063, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30893737

RESUMEN

The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide.

10.
Nucleic Acids Res ; 47(D1): D1137-D1145, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357347

RESUMEN

The Genome Database for Rosaceae (GDR, https://www.rosaceae.org) is an integrated web-based community database resource providing access to publicly available genomics, genetics and breeding data and data-mining tools to facilitate basic, translational and applied research in Rosaceae. The volume of data in GDR has increased greatly over the last 5 years. The GDR now houses multiple versions of whole genome assembly and annotation data from 14 species, made available by recent advances in sequencing technology. Annotated and searchable reference transcriptomes, RefTrans, combining peer-reviewed published RNA-Seq as well as EST datasets, are newly available for major crop species. Significantly more quantitative trait loci, genetic maps and markers are available in MapViewer, a new visualization tool that better integrates with other pages in GDR. Pathways can be accessed through the new GDR Cyc Pathways databases, and synteny among the newest genome assemblies from eight species can be viewed through the new synteny browser, SynView. Collated single-nucleotide polymorphism diversity data and phenotypic data from publicly available breeding datasets are integrated with other relevant data. Also, the new Breeding Information Management System allows breeders to upload, manage and analyze their private breeding data within the secure GDR server with an option to release data publicly.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genoma de Planta/genética , Genómica/métodos , Rosaceae/genética , Biología Computacional/estadística & datos numéricos , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Almacenamiento y Recuperación de la Información/métodos , Internet , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Rosaceae/clasificación , Especificidad de la Especie , Sintenía , Factores de Tiempo , Interfaz Usuario-Computador
11.
Sci Rep ; 8(1): 13478, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194382

RESUMEN

Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N2O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N2O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha-1 yr-1 increased maize yield and N2O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha-1, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.


Asunto(s)
Producción de Cultivos , Fertilizantes , Glycine max/crecimiento & desarrollo , Nitrógeno , Suelo/química , Zea mays/crecimiento & desarrollo , Brasil , Nitrógeno/química , Nitrógeno/farmacología
12.
PLoS One ; 11(4): e0152311, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27050309

RESUMEN

Brazil faces an enormous challenge to implement its revised Forest Code. Despite big losses for the environment, the law introduces new mechanisms to facilitate compliance and foster payment for ecosystem services (PES). The most promising of these is a market for trading forest certificates (CRAs) that allows landowners to offset their restoration obligations by paying for maintaining native vegetation elsewhere. We analyzed the economic potential for the emerging CRA market in Brazil and its implications for PES programs. Results indicate a potential market for trading 4.2 Mha of CRAs with a gross value of US$ 9.2±2.4 billion, with main regional markets forming in the states of Mato Grosso and São Paulo. This would be the largest market for trading forests in the world. Overall, the potential supply of CRAs in Brazilian states exceeds demand, creating an opportunity for additional PES programs to use the CRA market. This expanded market could provide not only monetary incentives to conserve native vegetation, but also environmental co-benefits by fostering PES programs focused on biodiversity, water conservation, and climate regulation. Effective implementation of the Forest Code will be vital to the success of this market and this hurdle brings uncertainty into the market. Long-term commitment, both within Brazil and abroad, will be essential to overcome the many challenges ahead.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Brasil , Modelos Teóricos
13.
Glob Chang Biol ; 22(10): 3405-13, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27028754

RESUMEN

Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system.


Asunto(s)
Conservación de los Recursos Naturales , Agua , Agricultura , Brasil , Bosques
14.
Glob Chang Biol ; 22(7): 2516-25, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26750627

RESUMEN

Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years.


Asunto(s)
Ciclo del Carbono , Incendios , Bosques , Carbono/análisis , Suelo/química , América del Sur , Árboles/crecimiento & desarrollo , Clima Tropical
15.
Glob Chang Biol ; 21(7): 2569-2587, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25704051

RESUMEN

There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century.

16.
Nurs Educ Perspect ; 35(5): 294-300, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25291924

RESUMEN

AIM: The study compared the perceptions of nurses who participated in the clinical education of students using traditional and dedicated education unit (DEU) models. BACKGROUND: In the traditional model, faculty are the primary clinical instructors for students. In a DEU, nurses provide clinical instruction with faculty support. METHOD: This mixed-methods study used surveys and interviews. RESULTS: Compared to nurses on traditional units, DEU nurses were more likely to agree that their unit welcomed students, had a strong commitment to teaching, and received professional development from clinical faculty. The nurses rated the learning gains of students as greater on DEUs than traditional units and viewed the leadership of the nurse manager and the quality of patient care as similar. CONCLUSION: The study provides evidence that, from the nurses' perspective, the DEU faculty-nurse partnership provides students with superior clinical education experiences and may improve nurse work satisfaction.


Asunto(s)
Actitud del Personal de Salud , Bachillerato en Enfermería/organización & administración , Enfermeras Clínicas/psicología , Rol de la Enfermera , Práctica del Docente de Enfermería/organización & administración , Enseñanza/métodos , Adulto , Recolección de Datos , Femenino , Grupos Focales , Humanos , Masculino , Persona de Mediana Edad , Modelos Educacionales , New York , Investigación en Educación de Enfermería , Oregon , South Carolina , Estudiantes de Enfermería , Tennessee
17.
Nurs Educ Perspect ; 35(5): 301-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25291925

RESUMEN

AIM: The study compared students' perceptions of their clinical learning experiences in a dedicated education unit (DEU) with their experiences in traditional clinical education. BACKGROUND: Unlike traditional academic-instructor models, expert nurses in the DEU provide clinical education to students with faculty support. METHOD: This repeated measures design used student surveys, supplemented by focus group data. RESULTS: Students were more likely to agree that their clinical learning experience was high quality and they had a consistent mentoring relationship during DEU rotations. Students also reported the quality of the unit's learning environment, the leadership style of the nurse manager, and the nursing care on the unit was more favorable in DEUs than traditional units. Consistent with their changed role in DEUs, faculty members were less active in helping students integrate theory and practice. CONCLUSION: These findings provide additional evidence of the value that the DEU model contributes to high-quality clinical education.


Asunto(s)
Bachillerato en Enfermería/organización & administración , Mentores , Estudiantes de Enfermería/psicología , Enseñanza/métodos , Adulto , Femenino , Grupos Focales , Humanos , Liderazgo , Masculino , Persona de Mediana Edad , Enfermeras Administradoras , Investigación en Educación de Enfermería , Oregon , South Carolina , Tennessee , Adulto Joven
18.
Proc Natl Acad Sci U S A ; 111(17): 6347-52, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733937

RESUMEN

Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.


Asunto(s)
Sequías , Incendios , Árboles/fisiología , Biomasa , Brasil , Clima , Humedad , Temperatura , Factores de Tiempo , Presión de Vapor , Agua
20.
Proc Natl Acad Sci U S A ; 110(23): 9601-6, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23671098

RESUMEN

Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/estadística & datos numéricos , Lluvia , Energía Renovable/estadística & datos numéricos , Ríos , Árboles , Brasil , Simulación por Computador , Modelos Teóricos , Política Pública , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...