Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 90(21): 9570-9581, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27512066

RESUMEN

Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. IMPORTANCE: Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly, NS1 itself also inhibited MAC activity, suggesting a direct role of this protein in the inhibition process. Our findings imply a role for NS1 as a terminal pathway inhibitor of the complement system.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/metabolismo , Virus del Dengue/metabolismo , Dengue/metabolismo , Dengue/virología , Vitronectina/metabolismo , Línea Celular Tumoral , Flavivirus/metabolismo , Humanos , Unión Proteica/fisiología , Técnicas del Sistema de Dos Híbridos , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/metabolismo , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología
2.
J Virol Methods ; 175(1): 109-16, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21569796

RESUMEN

The non-structural 1 (NS1) protein plays an important role in dengue diagnosis because it has been detected as a soluble serum antigen in both primary and secondary infections. The NS1 protein was expressed in Escherichia coli cells, and the efficiency of four different refolding protocols was tested. All of the protocols generated dimeric NS1 in a conformation similar to that of the protein expressed by eukaryotic cells. A polyclonal antibody produced from the properly folded E. coli recombinant NS1 (rNS1) protein proved to be a useful tool for the diagnosis of Dengue virus because it detected 100% of the Dengue virus 2 (DENV2) in infected patients' sera and 60% of the DENV IgM-positive sera not detected by commercial NS1-based diagnostic kits. These data suggest a high-efficiency method for correctly folding rNS1 that maintains its structural and immunogenic properties. In addition, a detection method using the polyclonal antibody against correctly folded rNS1 seemed to be more sensitive and efficient for NS1 detection in serum, highlighting its usefulness for developing a high-sensitivity diagnostic kit.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Dengue/diagnóstico , Escherichia coli/metabolismo , Pliegue de Proteína , Proteínas no Estructurales Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Western Blotting , Virus del Dengue/genética , Diagnóstico Precoz , Ensayo de Inmunoadsorción Enzimática/métodos , Escherichia coli/genética , Glicoproteínas/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Conejos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA