Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 903053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720988

RESUMEN

Growing concern about climate change has been driving the search for solutions to mitigate greenhouse gas emissions. In this context, carbon capture and utilization (CCU) technologies have been proposed and developed as a way of giving CO2 a sustainable and economically viable destination. An interesting approach is the conversion of CO2 into valuable chemicals, such as methanol (MeOH) and dimethyl ether (DME), by means of catalytic hydrogenation on Cu-, Zn-, and Al-based catalysts. In this work, three catalysts were tested for the synthesis of MeOH and DME from CO2 using a single fixed-bed reactor. The first one was a commercial CuO/γ-Al2O3; the second one was CuO-ZnO/γ-Al2O3, obtained via incipient wetness impregnation of the first catalyst with an aqueous solution of zinc acetate; and the third one was a CZA catalyst obtained by the coprecipitation method. The samples were characterized by XRD, XRF, and N2 adsorption isotherms. The hydrogenation of CO2 was performed at 25 bar, 230°C, with a H2:CO2 ratio of 3 and space velocity of 1,200 ml (g cat · h)-1 in order to assess the potential of these catalysts in the conversion of CO2 to methanol and dimethyl ether. The catalyst activity was correlated to the adsorption isotherms of each reactant. The main results show that the highest CO2 conversion and the best yield of methanol are obtained with the CZACP catalyst, very likely due to its higher adsorption capacity of H2. In addition, although the presence of zinc oxide reduces the textural properties of the porous catalyst, CZAWI showed higher CO2 conversion than commercial catalyst CuO/γ-Al2O3.

2.
An Acad Bras Cienc ; 92(3): e20190453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33206799

RESUMEN

Taste and odor compounds affect drinking water safety perception and may drive consumers to less secure water sources. Adsorption, using powered activated carbon, is the most common method to remove these compounds but greatly increases the amount of sludge generated. Another way of removing taste and odor compounds is to use filters with granular activated carbon (GAC) but little is still known on how to design them. In this work, the homogeneous surface diffusion model (HSDM) was used to model bench-scale kinetic and isotherm experiments and to simulate the removal of geosmin in a full-scale GAC filter. Geosmin adsorption isotherm was best described by the Freundlich model in all used carbons and film resistance (Kf) was more relevant to adsorption kinetics than pore diffusion (Ds). The simulation showed that in a filter with an empty bed contact time of 5 minutes and raw water with geosmin concentrations of 50, 75, and 100 ng.L-1, the effluent would exceed the trash-hold concentration (10 ng.L-1) in 98, 77, and 66 days, respectively, without considering biological removal.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Naftoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA