Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38517886

RESUMEN

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Asunto(s)
Neoplasias de la Mama , Redes Reguladoras de Genes , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Animales , Ratones , Cromosomas Humanos Par 4/genética , Proliferación Celular/genética , Aberraciones Cromosómicas , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
2.
Autophagy ; 19(4): 1354-1356, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36026467

RESUMEN

Macroautophagy/autophagy acts to promote homeostasis and is increasingly understood to selectively target cargo for degradation. The LC3-family of proteins mediate diverse yet distinct cargo recruitment to phagophores. However, what underlies specificity for cargo engagement among LC3 proteins is poorly understood. Using an unbiased protein interaction screen of LC3B and LC3C, we uncover a novel LC3C-endocytic-associated-pathway (LEAP) that recruits selective plasma membrane (PM) cargo to phagophores. We show LC3C but not LC3B localizes to peripheral endosomes and engages proteins that traffic between the PM, endosomes and autophagosomes. We establish that endocytic LC3C binds cargo internalized from the PM, including MET receptor tyrosine kinase and TFRC (transferrin receptor), and targets them toward autophagic degradation. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signaling and autophagic degradation with important implications in cancer and other disease states.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagosomas/metabolismo , Transducción de Señal , Macroautofagia
3.
Nat Commun ; 13(1): 3812, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780247

RESUMEN

Autophagy selectively targets cargo for degradation, yet mechanistic understanding remains incomplete. The ATG8-family plays key roles in autophagic cargo recruitment. Here by mapping the proximal interactome of ATG8-paralogs, LC3B and LC3C, we uncover a LC3C-Endocytic-Associated-Pathway (LEAP) that selectively recruits plasma-membrane (PM) cargo to autophagosomes. We show that LC3C localizes to peripheral endosomes and engages proteins that traffic between PM, endosomes and autophagosomes, including the SNARE-VAMP3 and ATG9, a transmembrane protein essential for autophagy. We establish that endocytic LC3C binds cargo internalized from the PM, including the Met receptor tyrosine kinase and transferrin receptor, and is necessary for their recruitment into ATG9 vesicles targeted to sites of autophagosome initiation. Structure-function analysis identified that LC3C-endocytic localization and engagement with PM-cargo requires the extended carboxy-tail unique to LC3C, the TBK1 kinase, and TBK1-phosphosites on LC3C. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signalling with autophagic degradation.


Asunto(s)
Endosomas , Proteínas Asociadas a Microtúbulos , Autofagia/fisiología , Membrana Celular/metabolismo , Endosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas SNARE/metabolismo
4.
J Cell Biol ; 218(1): 285-298, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404949

RESUMEN

Differential inclusion or skipping of microexons is an increasingly recognized class of alternative splicing events. However, the functional significance of microexons and their contribution to signaling diversity is poorly understood. The Met receptor tyrosine kinase (RTK) modulates invasive growth and migration in development and cancer. Here, we show that microexon switching in the Arf6 guanine nucleotide exchange factor cytohesin-1 controls Met-dependent cell migration. Cytohesin-1 isoforms, differing by the inclusion of an evolutionarily conserved three-nucleotide microexon in the pleckstrin homology domain, display differential affinity for PI(4,5)P2 (triglycine) and PI(3,4,5)P3 (diglycine). We show that selective phosphoinositide recognition by cytohesin-1 isoforms promotes distinct subcellular localizations, whereby the triglycine isoform localizes to the plasma membrane and the diglycine to the leading edge. These data highlight microexon skipping as a mechanism to spatially restrict signaling and provide a mechanistic link between RTK-initiated phosphoinositide microdomains and Arf6 during signal transduction and cancer cell migration.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Empalme Alternativo , Factores de Intercambio de Guanina Nucleótido/genética , Factor de Crecimiento de Hepatocito/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/antagonistas & inhibidores , Factores de Ribosilacion-ADP/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Exones , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Células HeLa , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Intrones , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/química , Unión Proteica , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , ARN Interferente Pequeño/antagonistas & inhibidores , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
5.
Cell Rep ; 22(12): 3191-3205, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562176

RESUMEN

Triple-negative breast cancers (TNBCs) display a complex spectrum of mutations and chromosomal aberrations. Chromosome 5q (5q) loss is detected in up to 70% of TNBCs, but little is known regarding the genetic drivers associated with this event. Here, we show somatic deletion of a region syntenic with human 5q33.2-35.3 in a mouse model of TNBC. Mechanistically, we identify KIBRA as a major factor contributing to the effects of 5q loss on tumor growth and metastatic progression. Re-expression of KIBRA impairs metastasis in vivo and inhibits tumorsphere formation by TNBC cells in vitro. KIBRA functions co-operatively with the protein tyrosine phosphatase PTPN14 to trigger mechanotransduction-regulated signals that inhibit the nuclear localization of oncogenic transcriptional co-activators YAP/TAZ. Our results argue that the selective advantage produced by 5q loss involves reduced dosage of KIBRA, promoting oncogenic functioning of YAP/TAZ in TNBC.


Asunto(s)
Anemia Macrocítica/genética , Genes Supresores de Tumor , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Mamarias Experimentales/genética , Fosfoproteínas/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Metástasis de la Neoplasia , Fosfoproteínas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
6.
J Cell Biol ; 214(6): 719-34, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27597754

RESUMEN

Invadopodia are specialized membrane protrusions that support degradation of extracellular matrix (ECM) by cancer cells, allowing invasion and metastatic spread. Although early stages of invadopodia assembly have been elucidated, little is known about maturation of invadopodia into structures competent for ECM proteolysis. The localized conversion of phosphatidylinositol(3,4,5)-triphosphate and accumulation of phosphatidylinositol(3,4)-bisphosphate at invadopodia is a key determinant for invadopodia maturation. Here we investigate the role of the 5'-inositol phosphatase, SHIP2, and reveal an unexpected scaffold function of SHIP2 as a prerequisite for invadopodia-mediated ECM degradation. Through biochemical and structure-function analyses, we identify specific interactions between SHIP2 and Mena, an Ena/VASP-family actin regulatory protein. We demonstrate that SHIP2 recruits Mena, but not VASP, to invadopodia and that disruption of SHIP2-Mena interaction in cancer cells leads to attenuated capacity for ECM degradation and invasion in vitro, as well as reduced metastasis in vivo. Together, these findings identify SHIP2 as a key modulator of carcinoma invasiveness and a target for metastatic disease.


Asunto(s)
Neoplasias de la Mama/enzimología , Movimiento Celular , Proteínas de Microfilamentos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Podosomas/enzimología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Femenino , Células HEK293 , Xenoinjertos , Humanos , Masculino , Ratones Desnudos , Proteínas de Microfilamentos/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfoproteínas/metabolismo , Podosomas/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
7.
Mol Cell ; 60(2): 195-207, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26474064

RESUMEN

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Regulación Neoplásica de la Expresión Génica , Gluconeogénesis/genética , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Adaptación Fisiológica/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico/genética , Glucosa/deficiencia , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metabolómica , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/patología , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Purinas/biosíntesis , Ácido Pirúvico/metabolismo , Serina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA