Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(15): 13775-13790, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091396

RESUMEN

This study describes new electrocatalyst materials that can detect and reduce environmental pollutants. The synthesis and characterization of semiconductor nanocomposites (NCs) made from active ZrO2@S-doped g-C3N4 is presented. Electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) measurements were used to examine electron transfer characteristics of the synthesized samples. Using X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HR-SEM) techniques, inclusion of monoclinic ZrO2 on flower-shaped S-doped-g-C3N4 was visualized. High-resolution X-ray photoelectron spectroscopy (XPS) revealed successful doping of ZrO2 into the lattice of S-doped g-C3N4. The electron transport mechanism between the electrolyte and the fluorine tin-oxide electrode (FTOE) was enhanced by the synergistic interaction between ZrO2 and S-doped g-C3N4 as co-modifiers. Development of a platform with improved conductivity based on an FTOE modified with ZrO2@S-doped g-C3N4 NCs resulted in an ideal platform for the detection of 4-nitrophenol (4-NP) in water. The electrocatalytic activity of the modified electrode was evaluated through determination of 4-NP by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) under optimum conditions (pH 5). ZrO2@S-doped g-C3N4 (20%)/FTOE exhibited good electrocatalytic activity with a linear range from 10 to 100 µM and a low limit of detection (LOD) of 6.65 µM. Typical p-type semiconductor ZrO2@S-doped g-C3N4 NCs significantly impact the superior detection of 4-NP due to its size, shape, optical properties, specific surface area and effective separation of electron-hole pairs. We conclude that the superior electrochemical sensor behavior of the ZrO2@S-doped g-C3N4 (20%)/FTOE surfaces results from the synergistic interaction between S-doped g-C3N4 and ZrO2 surfaces that produce an active NC interface.

2.
PLoS One ; 13(7): e0200552, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995965

RESUMEN

Nano scanning Auger microscopy (NanoSAM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) have been used in materials science research for some time, but NanoSAM, in particular, has only recently been applied to biological specimens. Here, the first concurrent utilization of NanoSAM, TOF-SIMS and microscopic techniques for the examination of a standard beverage fermentation strain of Saccharomyces pastorianus uncovered the presence of intracellular networks of CO2 in fermenting cells. Respiring cells produced few bubbles and instead had large internal vacuolar structures. Transmission electron microscopy analysis also showed osmiophilic layers at the cell exterior of fermenting cells that became more prevalent with fermentation duration, while osmiophilic layers were largely absent in respiring cells. TOF-SIMS analysis showed a compositional difference at the exterior and interior of SMA cells and between fermenting and respiring cells. Fermenting cells also appeared to have different 3-OH oxylipin profiles compared to respiring cells based upon examination with immunofluorescence microscopy. The results of this work and further study using these materials science techniques will substantially enhance our understanding of the chemical, ultrastructural and metabolic changes that occur in fermentation yeasts.


Asunto(s)
Saccharomyces/metabolismo , Saccharomyces/ultraestructura , Espectrometría de Masas , Microscopía Electrónica de Rastreo
3.
Can J Microbiol ; 59(6): 413-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23750956

RESUMEN

According to literature, the elongated ascospores of Dipodascopsis uninucleata var. uninucleata exhibit smart movement when forcefully ejected from bottle-shaped asci. This type of movement is defined as the unique patterns of non-random movement of ascospores with specialized morphology thereby facilitating release from asci. Smart movement is required to actively release ascospores individually through the narrow ascus neck, without causing an obstruction and blocking ascospore release. However, little is known about the propulsion mechanism of this cannon-type release system. We show that asci of this yeast contain a central channel (barrel) filled with ascospores. These are surrounded by a sheath-like structure that lines the inner surface of the ascus wall. We found that this sheath is responsible for forcing the naked ascospores out of the ascus by exerting turgor pressure from the bottom towards the tip of the ascus. This cannon firing system is in contrast to that found in Dipodascus geniculatus, where no sheaths lining the ascus interior were observed. Instead, sheaths were found enveloping each ascospore.


Asunto(s)
Saccharomycetales/citología , Saccharomycetales/fisiología , Esporas Fúngicas/fisiología , Presión , Esporas Fúngicas/ultraestructura
4.
Sensors (Basel) ; 12(10): 13058-74, 2012 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23201985

RESUMEN

In this study the mitochondrion is regarded as a target to reveal compounds that may be used to combat various diseases. Consequently, the sexual structures of yeasts (with high mitochondrial activity) were identified as sensors to screen for various anti-mitochondrial drugs that may be toxic to humans and that are directed, amongst others, against fungal diseases and cancer. Strikingly, these sensors indicated that chloroquine is a potent pro-mitochondrial drug which stimulated yeast sexual reproduction. In addition, these sensors also showed that some Non-Steroidal Anti-Inflammatory drugs (NSAIDs), anti-malarial drugs, antifungal and anticancer drugs are anti-mitochondrial. These yeast sensor bio-assays may fast track studies aimed at discovering new drugs as well as their mechanisms and should now be further evaluated for selectivity towards anti-/ pro-mitochondrials, fertility drugs and contraceptives, using in vitro, in vivo, in silico and omics research.


Asunto(s)
Bioensayo/métodos , Técnicas Biosensibles/métodos , Cloroquina/aislamiento & purificación , Descubrimiento de Drogas/métodos , Levaduras/fisiología , Antifúngicos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Eremothecium/fisiología , Humanos , Lipomyces/fisiología , Mitocondrias/efectos de los fármacos
5.
FEMS Yeast Res ; 12(7): 867-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23020660

RESUMEN

Current paradigms assume that gas bubbles cannot be formed within yeasts although these workhorses of the baking and brewing industries vigorously produce and release CO(2) gas. We show that yeasts produce gas bubbles that fill a significant part of the cell. The missing link between intracellular CO(2) production by glycolysis and eventual CO(2) release from cells has therefore been resolved. Yeasts may serve as model to study CO(2) behavior under pressurized conditions that may impact on fermentation biotechnology.


Asunto(s)
Dióxido de Carbono/metabolismo , Citoplasma/metabolismo , Gases/metabolismo , Saccharomyces/metabolismo , Glucólisis
6.
Can J Microbiol ; 56(11): 883-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21076478

RESUMEN

The oleaginous fungi Cryptococcus curvatus and Mucor circinelloides were used to determine the effect of palm oil breakdown products, measured as polymerized triglycerides (PTGs), on lipid turnover and on fungal growth and morphology. In M. circinelloides, we found after 7 days of growth, a decrease in biomass and in lipid utilization and accumulation at increased PTG levels, both at low and neutral pH. In C. curvatus, there was also a decrease in lipid utilization and biomass production at increased PTG levels, at both low and neutral pH. However, an increase in oil accumulation was observed at low pH while it remained similar at neutral pH for all PTG levels tested. Hairy and warty protuberances on the cell surface were observed when C. curvatus was grown on oils with 15% and 45% PTGs, respectively. Using nano scanning Auger microscopy, we found no evidence to suggest a difference in elemental composition of the surfaces of the warty protuberances compared with the rest of the cell wall surface. We conclude that the warty protuberances are outgrowths of cell walls and that the changes observed in lipid turnover in both fungi are due to the presence of palm oil breakdown products.


Asunto(s)
Cryptococcus/metabolismo , Metabolismo de los Lípidos , Mucor/metabolismo , Aceites de Plantas/metabolismo , Biomasa , Cryptococcus/crecimiento & desarrollo , Cryptococcus/ultraestructura , Concentración de Iones de Hidrógeno , Mucor/crecimiento & desarrollo , Mucor/ultraestructura , Aceite de Palma , Triglicéridos/metabolismo , Triglicéridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...