Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 12(6): 878-889, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32386316

RESUMEN

Phages can fundamentally alter the physiology and metabolism of their hosts. Although these phages are ubiquitous in the bacterial world, they have seldom been described among endosymbiotic bacteria. One notable exception is the APSE phage that is found associated with the gammaproteobacterial Hamiltonella defensa, hosted by several insect species. This secondary facultative endosymbiont is not necessary for the survival of its hosts but can infect certain individuals or even whole populations. Its infection in aphids is often associated with protection against parasitoid wasps. This protective phenotype has actually been linked to the infection of the symbiont strain with an APSE, which carries a toxin cassette that varies among so-called "types." In the present work, we seek to expand our understanding of the diversity of APSE phages as well as the relations of their Hamiltonella hosts. For this, we assembled and annotated the full genomes of 16 APSE phages infecting Hamiltonella symbionts across ten insect species. Molecular and phylogenetic analyses suggest that recombination has occurred repeatedly among lineages. Comparative genomics of the phage genomes revealed two variable regions that are useful for phage typing. Additionally, we find that mobile elements could play a role in the acquisition of new genes in the toxin cassette. Altogether, we provide an unprecedented view of APSE diversity and their genome evolution across aphids. This genomic investigation will provide a valuable resource for the design and interpretation of experiments aiming at understanding the protective phenotype these phages confer to their insect hosts.


Asunto(s)
Áfidos/microbiología , Bacteriófagos/genética , Gammaproteobacteria/virología , Animales , Gammaproteobacteria/genética , Genoma Viral , Filogenia , Simbiosis
2.
ISME J ; 14(1): 259-273, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31624345

RESUMEN

Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera's. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera's. Additionally, we found that the Erwinia vitamin-biosynthetic genes not only compensate for Buchnera's deficiencies, but also provide a new nutritional function; whose genes have been horizontally acquired from a Sodalis-related bacterium. A subset of these genes have been subsequently transferred to a new Hamiltonella co-obligate symbiont in one specific Cinara lineage. These results show that the establishment and dynamics of multi-partner endosymbioses can be mediated by lateral gene transfers between co-ocurring symbionts.


Asunto(s)
Áfidos/microbiología , Buchnera/genética , Erwinia/genética , Transferencia de Gen Horizontal , Simbiosis/genética , Animales , Vitaminas/biosíntesis
3.
Ecol Evol ; 9(20): 11657-11671, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31695876

RESUMEN

Climate adaptation has major consequences in the evolution and ecology of all living organisms. Though phytophagous insects are an important component of Earth's biodiversity, there are few studies investigating the evolution of their climatic preferences. This lack of research is probably because their evolutionary ecology is thought to be primarily driven by their interactions with their host plants. Here, we use a robust phylogenetic framework and species-level distribution data for the conifer-feeding aphid genus Cinara to investigate the role of climatic adaptation in the diversity and distribution patterns of these host-specialized insects. Insect climate niches were reconstructed at a macroevolutionary scale, highlighting that climate niche tolerance is evolutionarily labile, with closely related species exhibiting strong climatic disparities. This result may suggest repeated climate niche differentiation during the evolutionary diversification of Cinara. Alternatively, it may merely reflect the use of host plants that occur in disparate climatic zones, and thus, in reality the aphid species' fundamental climate niches may actually be similar but broad. Comparisons of the aphids' current climate niches with those of their hosts show that most Cinara species occupy the full range of the climatic tolerance exhibited by their set of host plants, corroborating the hypothesis that the observed disparity in Cinara species' climate niches can simply mirror that of their hosts. However, 29% of the studied species only occupy a subset of their hosts' climatic zone, suggesting that some aphid species do indeed have their own climatic limitations. Our results suggest that in host-specialized phytophagous insects, host associations cannot always adequately describe insect niches and abiotic factors must be taken into account.

4.
Sci Rep ; 9(1): 3646, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842584

RESUMEN

An accurate estimation of parasitism rates and diversity of parasitoids of crop insect pests is a prerequisite for exploring processes leading to efficient natural biocontrol. Traditional methods such as rearing have been often limited by taxonomic identification, insect mortality and intensive work, but the advent of high-throughput sequencing (HTS) techniques, such as DNA metabarcoding, is increasingly seen as a reliable and powerful alternative approach. Little has been done to explore the benefits of such an approach for estimating parasitism rates and parasitoid diversity in an agricultural context. In this study, we compared the composition of parasitoid species and parasitism rates between rearing and DNA metabarcoding of host eggs and larvae of the millet head miner, Heliocheilus albipunctella De Joannis (Lepidoptera, Noctuidae), collected from millet fields in Senegal. We first assessed the detection threshold for the main ten endoparasitoids, by sequencing PCR products obtained from artificial dilution gradients of the parasitoid DNAs in the host moth. We then assessed the potential of DNA metabarcoding for diagnosing parasitism rates in samples collected from the field. Under controlled conditions, our results showed that relatively small quantities of parasitoid DNA (0.07 ng) were successfully detected within an eight-fold larger quantity of host DNA. Parasitoid diversity and parasitism rate estimates were always higher for DNA metabarcoding than for host rearing. Furthermore, metabarcoding detected multi-parasitism, cryptic parasitoid species and differences in parasitism rates between two different sampling sites. Metabarcoding shows promise for gaining a clearer understanding of the importance and complexity of host-parasitoid interactions in agro-ecosystems, with a view to improving pest biocontrol strategies.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/parasitología , Código de Barras del ADN Taxonómico , Interacciones Huésped-Parásitos/genética , Insectos/fisiología , Simbiosis/genética , Animales
5.
Mol Ecol ; 28(5): 1009-1029, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593690

RESUMEN

Domestic species such as cattle (Bos taurus taurus and B. t. indicus) represent attractive biological models to characterize the genetic basis of short-term evolutionary response to climate pressure induced by their post-domestication history. Here, using newly generated dense SNP genotyping data, we assessed the structuring of genetic diversity of 21 autochtonous cattle breeds from the whole Mediterranean basin and performed genome-wide association analyses with covariables discriminating the different Mediterranean climate subtypes. This provided insights into both the demographic and adaptive histories of Mediterranean cattle. In particular, a detailed functional annotation of genes surrounding variants associated with climate variations highlighted several biological functions involved in Mediterranean climate adaptation such as thermotolerance, UV protection, pathogen resistance or metabolism with strong candidate genes identified (e.g., NDUFB3, FBN1, METTL3, LEF1, ANTXR2 and TCF7). Accordingly, our results suggest that main selective pressures affecting cattle in Mediterranean area may have been related to variation in heat and UV exposure, in food resources availability and in exposure to pathogens, such as anthrax bacteria (Bacillus anthracis). Furthermore, the observed contribution of the three main bovine ancestries (indicine, European and African taurine) in these different populations suggested that adaptation to local climate conditions may have either relied on standing genomic variation of taurine origin, or adaptive introgression from indicine origin, depending on the local breed origins. Taken together, our results highlight the genetic uniqueness of local Mediterranean cattle breeds and strongly support conservation of these populations.


Asunto(s)
Aclimatación/genética , Variación Genética , Genómica , Animales , Cruzamiento , Bovinos , Mapeo Cromosómico , Clima , Genética de Población , Genoma , Genotipo , Filogenia , Termotolerancia/genética
6.
Genome Biol Evol ; 10(9): 2178-2189, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30102395

RESUMEN

Genome reduction is pervasive among maternally inherited bacterial endosymbionts. This genome reduction can eventually lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbor two obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara strobi harbors not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and Sodalis) actually contribute to the hosts' supply of essential nutrients while S. symbiotica has become unable to contribute towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a few proteins and displays extensive pseudogenization. Thus, we propose an ongoing symbiont replacement within C. strobi, in which a once "competent" S. symbiotica does no longer contribute towards the beneficial association. These results suggest that in dual symbiotic systems, when a substitute cosymbiont is available, genome deterioration can precede genome reduction and a symbiont can be maintained despite the apparent lack of benefit to its host.


Asunto(s)
Áfidos/microbiología , Buchnera/genética , Enterobacteriaceae/genética , Genoma Bacteriano , Serratia/genética , Simbiosis , Animales , Áfidos/fisiología , Evolución Biológica , Buchnera/aislamiento & purificación , Buchnera/fisiología , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/fisiología , Redes y Vías Metabólicas , Serratia/aislamiento & purificación , Serratia/fisiología
7.
PLoS One ; 9(6): e97620, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24896814

RESUMEN

UNLABELLED: Aphids constitute a diverse group of plant-feeding insects and are among the most important crop pests in temperate regions. Their morphological identification is time-consuming and requires specific knowledge, training and skills that may take years to acquire. We assessed the advantages and limits of DNA barcoding with the standard COI barcode fragment for the identification of European aphids. We constructed a large reference dataset of barcodes from 1020 specimens belonging to 274 species and 87 genera sampled throughout Europe and set up a database-driven website allowing species identification from query sequences. RESULTS: In this unbiased sampling of the taxonomic diversity of European aphids, intraspecific divergence ranged from 0.0% to 3.9%, with a mean value of 0.29%, whereas mean congeneric divergence was 6.4%, ranging from 0.0% to 15%. Neighbor-joining analysis generated a tree in which most species clustered in distinct genetic units. Most of the species with undifferentiated or overlapping barcodes belonged to the genus Aphis or, to a lesser extent, the genera Brachycaudus, Dysaphis and Macrosiphum. The taxa involved were always morphologically similar or closely related and belonged to species groups known to present taxonomic difficulties. CONCLUSIONS: These data confirm that COI barcoding is a useful identification tool for aphids. Barcode identification is straightforward and reliable for 80% of species, including some difficult to distinguish on the basis of morphological characters alone. Unsurprisingly, barcodes often failed to distinguish between species from groups for which classical taxonomy has also reached its limits, leading to endless revisions and discussions about species and subspecies definitions. In such cases, the development of an effective procedure for the accurate identification of aphid specimens continues to pose a difficult challenge.


Asunto(s)
Áfidos/genética , Código de Barras del ADN Taxonómico , Animales , Bases de Datos Genéticas , Europa (Continente) , Filogenia , Análisis de Secuencia de ADN
8.
Insect Sci ; 21(3): 374-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24302699

RESUMEN

A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1-α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1-α, and analysis of COI and EF1-α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009), comb. nov., and P. middletonii (Thomas, 1879). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.).


Asunto(s)
Áfidos/fisiología , Evolución Molecular , Filogenia , Animales , Áfidos/genética , Áfidos/microbiología , Buchnera/genética , Buchnera/fisiología , Núcleo Celular/genética , ADN Mitocondrial/genética , Femenino , Genes de Insecto/genética , Medio Oeste de Estados Unidos , Simbiosis
9.
C R Biol ; 333(6-7): 474-87, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20541159

RESUMEN

Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids' host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation.


Asunto(s)
Áfidos/fisiología , Biodiversidad , Evolución Biológica , Fenómenos Fisiológicos de las Plantas , Animales , Interacciones Huésped-Parásitos , Reproducción
10.
C R Biol ; 333(6-7): 497-503, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20541161

RESUMEN

Global warming is one of the principal challenges facing insects worldwide. It affects individual species and interactions between species directly through effects on their physiology and indirectly through effects on their habitat. Aphids are particularly sensitive to temperature changes due to certain specific biological features of this group. Effects on individuals have repercussions for aphid diversity and population dynamics. At a pan-European scale, the EXAMINE observation network has provided evidence for an increase in the number of aphid species present over the last 30 years and for earlier spring flights. We review these results and provide a review of the principal effects of global warming on aphid communities.


Asunto(s)
Áfidos/fisiología , Calentamiento Global , Adaptación Fisiológica , Animales , Biodiversidad , Dióxido de Carbono/análisis , Ozono/análisis , Temperatura
11.
Proc Biol Sci ; 276(1654): 187-96, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-18782748

RESUMEN

Aphids harbour an obligatory symbiont, Buchnera aphidicola, providing essential amino acids not supplied by their diet. These bacteria are transmitted vertically and phylogenic analyses suggest that they have 'cospeciated' with their hosts. We investigated this cospeciation phenomenon at a fine taxonomic level, within the aphid genus Brachycaudus. We used DNA-based methods of species delimitation in both organisms, to avoid biases in the definition of aphid and Buchnera species and to infer association patterns without the presumption of a specific interaction. Our results call into question certain 'taxonomic' species of Brachycaudus and suggest that B. aphidicola has diversified into independently evolving entities, each specific to a 'phylogenetic' Brachycaudus species. We also found that Buchnera and their hosts simultaneously diversified, in parallel. These results validate the use of Buchnera DNA data for inferring the evolutionary history of their host. The Buchnera genome evolves rapidly, making it the perfect tool for resolving ambiguities in aphid taxonomy. This study also highlights the usefulness of species delimitation methods in cospeciation studies involving species difficult to conceptualize--as is the case for bacteria--and in cases in which the taxonomy of the interacting organisms has not been determined independently and species definition depends on host association.


Asunto(s)
Áfidos/microbiología , Evolución Biológica , Buchnera/genética , Especiación Genética , Genoma Bacteriano , Animales , Áfidos/genética , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...