Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8(1): 331, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28835709

RESUMEN

PDX1+/NKX6-1+ pancreatic progenitors (PPs) give rise to endocrine cells both in vitro and in vivo. This cell population can be successfully differentiated from human pluripotent stem cells (hPSCs) and hold the potential to generate an unlimited supply of ß cells for diabetes treatment. However, the efficiency of PP generation in vitro is highly variable, negatively impacting reproducibility and validation of in vitro and in vivo studies, and consequently, translation to the clinic. Here, we report the use of a proteomics approach to phenotypically characterize hPSC-derived PPs and distinguish these cells from non-PP populations during differentiation. Our analysis identifies the pancreatic secretory granule membrane major glycoprotein 2 (GP2) as a PP-specific cell surface marker. Remarkably, GP2 is co-expressed with NKX6-1 and PTF1A in human developing pancreata, indicating that it marks the multipotent pancreatic progenitors in vivo. Finally, we show that isolated hPSC-derived GP2+ cells generate ß-like cells (C-PEPTIDE+/NKX6-1+) more efficiently compared to GP2- and unsorted populations, underlining the potential therapeutic applications of GP2.Pancreatic progenitors (PPs) can be derived from human pluripotent stem cells in vitro but efficiency of differentiation varies, making it hard to sort for insulin-producing cells. Here, the authors use a proteomic approach to identify the secretory granule membrane glycoprotein 2 as a marker for PDX1+/NKX6-1+ PPs.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Membrana Celular/metabolismo , Páncreas/metabolismo , Células Madre/metabolismo , Diferenciación Celular , Células Cultivadas , Proteínas Ligadas a GPI , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Espectrometría de Masas , Páncreas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteómica/métodos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
2.
J Cell Sci ; 125(Pt 18): 4297-305, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22718348

RESUMEN

Primary cilia are involved in important developmental and disease pathways, such as the regulation of neurogenesis and tumorigenesis. They function as sensory antennae and are essential in the regulation of key extracellular signalling systems. We have investigated the effects of cell stress on primary cilia. Exposure of mammalian cells in vitro, and zebrafish cells in vivo, to elevated temperature resulted in the rapid loss of cilia by resorption. In mammalian cells loss of cilia correlated with a reduction in hedgehog signalling. Heat-shock-dependent loss of cilia was decreased in cells where histone deacetylases (HDACs) were inhibited, suggesting resorption is mediated by the axoneme-localised tubulin deacetylase HDAC6. In thermotolerant cells the rate of ciliary resorption was reduced. This implies a role for molecular chaperones in the maintenance of primary cilia. The cytosolic chaperone Hsp90 localises to the ciliary axoneme and its inhibition resulted in cilia loss. In the cytoplasm of unstressed cells, Hsp90 is known to exist in a complex with HDAC6. Moreover, immediately after heat shock Hsp90 levels were reduced in the remaining cilia. We hypothesise that ciliary resorption serves to attenuate cilia-mediated signalling pathways in response to extracellular stress, and that this mechanism is regulated in part by HDAC6 and Hsp90.


Asunto(s)
Cilios/metabolismo , Respuesta al Choque Térmico , Animales , Axonema/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Hedgehog/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Transporte de Proteínas , Transducción de Señal , Temperatura , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...